liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 319
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Ackelid, Ulf
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Armgarth, M.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Ethanol sensitivity of palladium-gate metal-oxide-semiconductor structures1986In: IEEE Electron Device Letters, ISSN 0741-3106, E-ISSN 1558-0563, Vol. 7, no 6, p. 353-355Article in journal (Refereed)
    Abstract [en]

    Hydrogen-sensitive palladium-gate MOS structures heated above 150°C show sensitivity to ethanol vapor. The effect is probably due to catalytic dehydrogenation of adsorbed ethanol molecules on the surface of the palladium gate.

  • 2.
    Aifa, Sami
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Aydin, J
    Nordvall, G
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Svensson, Samuel
    Hermanson, O
    A basic peptide within the juxtamembrane region is required for EGF receptor dimerization2005In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 302, no 1, p. 108-114Article in journal (Refereed)
    Abstract [en]

    The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (ΔTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function. © 2004 Elsevier Inc. All rights reserved.

  • 3. Aifa, Sami
    et al.
    Frikha, Fakher
    Miled, Nabil
    Johansen, Knut
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Svensson, Samuel P.S.
    Astra Zeneca.
    Phosphorylation of Thr654 but not Thr669 within the juxtamembrane domain of the EGF receptor inhibits calmodulin binding2006In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 347, no 2, p. 381-387Article in journal (Refereed)
    Abstract [en]

    Calcium-calmodulin (CaM) binding to the epidermal growth factor receptor (EGFR) has been shown to both inhibit and stimulate receptor activity. CaM binds to the intracellular juxtamembrane (JM) domain (Met645-Phe688) of EGFR. Protein kinase C (PKC) mediated phosphorylation of Thr654 occurs within this domain. CaM binding to the JM domain inhibits PKC phosphorylation and conversely PKC mediated phosphorylation of Thr654 or Glu substitution of Thr654 inhibits CaM binding. A second threonine residue (Thr669) within the JM domain is phosphorylated by the mitogen-activated protein kinase (MAPK). Previous results have shown that CaM interferes with EGFR-induced MAPK activation. If and how phosphorylation of Thr669 affects CaM-EGFR interaction is however not known.In the present study we have used surface plasmon resonance (BIAcore) to study the influence of Thr669 phosphorylation on real time interactions between the intracellular juxtamembrane (JM) domain of EGFR and CaM. The EGFR-JM was expressed as GST fusion proteins in Escherichia coli and phosphorylation was mimicked by generating Glu substitutions of either Thr654 or Thr669. Purified proteins were coupled to immobilized anti-GST antibodies at the sensor surface and increasing concentration of CaM was applied. When mutating Thr654 to Glu654 no specific CaM binding could be detected. However, neither single substitutions of Thr669 (Gly669 or Glu669) nor double mutants Gly654/Gly669 or Gly654/Glu669 influenced the binding of CaM to the EGFR-JM. This clearly shows that PKC may regulate EGF-mediated CaM signalling through phosphorylation of Thr654 whereas phosphorylation of Thr669 seems to play a CaM independent regulatory role. The role of both residues in the EGFR-calmodulin interaction was also studied in silico. Our modelling work supports a scenario where Thr654 from the JM domain interacts with Glu120 in the calmodulin molecule. Phosphorylation of Thr654 or Glu654 substitution creates a repulsive electrostatic force that would diminish CaM binding to the JM domain. These results are in line with the Biacore experiments showing a weak binding of the CaM to the JM domain with Thr654 mutated to Glu. Furthermore, these results provide a hypothesis to how CaM binding to EGFR might both positively and negatively interfere with EGFR-activity. © 2006 Elsevier Inc. All rights reserved.

  • 4.
    Aili, Daniel
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Enander, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Baltzer, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Towards novel functional materials and sensors using de novo designed polypeptides on gold nanoparticles2006In: Europtrode VIII,2006, 2006Conference paper (Other academic)
    Abstract [en]

        

  • 5.
    Aili, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Enander, Karin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Rydberg, Johan
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Baltzer, Lars
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Aggregation-Induced Folding of a de novo Designed Polypeptide Immobilized on Gold Nanoparticles2006In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 128, no 7, p. 2194 -2195Article in journal (Refereed)
    Abstract [en]

    This communication reports the first steps in the construction of a novel, nanoparticle-based hybrid material for biomimetic and biosensor applications. Gold nanoparticles were modified with synthetic polypeptides to enable control of the particle aggregation state in a switchable manner, and particle aggregation was, in turn, found to induce folding of the immobilized peptides.

  • 6.
    Aili, Daniel
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Enander, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rydberg, Johan
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Baltzer, Lars
    Uppsala University.
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Alpha helix-inducing dimerization of synthetic polypeptide scaffolds on gold - a model system for receptor mimicking and biosensing2004In: 8th World Congress on Biosensors,2004, 2004Conference paper (Other academic)
  • 7.
    Aili, Daniel
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Enander, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rydberg, Johan
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Baltzer, Lars
    Uppsala University.
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Folding-induced aggregation of polypeptide-decorated gold nanoparticles - an nano-scale Lego for the construction of complex hybrid materials2004In: 5th International Conference on Biological Physics,2004, 2004Conference paper (Other academic)
  • 8.
    Aili, Daniel
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Enander, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rydberg, Johan
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Baltzer, Lars
    Uppsala University.
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Immobilization and heterodimerisation of helix-loop-helix polypeptides on gold surfaces - a model system for peptide-surface interactions2003In: 1st World congress on Synthetic Receptors,2003, 2003Conference paper (Other academic)
  • 9.
    Ali Malik, Muhammad
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Gatto, Emanuela
    University Roma Tor Vergata.
    Macken, Stephen
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    DiNatale, Corrado
    University Roma Tor Vergata.
    Paolesse, Roberto
    University Roma Tor Vergata.
    DAmico, Arnaldo
    University Roma Tor Vergata.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Imaging fingerprinting of excitation emission matrices2009In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 635, no 2, p. 196-201Article in journal (Refereed)
    Abstract [en]

    The spectral fingerprinting of the excitation emission matrix (EEM) of fluorescent substances is demonstrated using polychromatic light sources and tri-chromatic image detectors. A model of the measured fingerprints explaining their features and classification performance, based on the polychromatic excitation of the indicators is proposed.

    Substantial amount of spectral information is retained in the fingerprints as corroborated by multivariate analysis and experimental conditions that favor such situation are identified.

    In average, for five different substances, the model shows a fitting goodness measured by the Pearsons r coefficient and the root mean square deviation of 0.8541 and 0.0247 respectively, while principal component classification patterns satisfactorily compare with the EEM spectroscopy classification and respectively explain 96% and 93% of the information in the fist two principal components.

    The measurements can be performed using regular computer screens as illumination and web cameras as detectors, which constitute ubiquitous and affordable platforms compatible with distributed evaluations, in contrast to regular instrumentation for EEM measurements.

  • 10.
    Alimelli, Adriano
    et al.
    Dept of Electronic Engineering University of Rome.
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Paolesse, Roberto
    dept of Chemical science and technology University of Rome.
    Moretti, Simonetta
    Instituto sperimentale per l´enologia.
    Ciolfi, Gaetano
    Instituto sperimentale per l´enologia.
    D´Amico, Arnaldo
    Dept. of Electronic Engineering University of Rome.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Di Natale, Corradeo
    Dept. of Electronic Engineering University of Rome.
    Direct quantitative evaluation of complex substances using computer screen photo-assisted technology: The case of red wine2007In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 597, p. 103-112Article in journal (Refereed)
  • 11. Alimelli, Adriano
    et al.
    Pennazza, Giorgio
    Santonico, Marco
    Paolesse, Roberto
    University of Rome, Italy.
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    D´Amico, Arnaldo
    University of Rome, Italy.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Di Natale, Corrado
    University of Rome, Italy.
    Fish freshness detection by a computer screen photoassisted based gas sensor array2007In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 582, no 2, p. 320-328Article in journal (Refereed)
    Abstract [en]

    In the last years a large number of different measurement methodologies were applied to measure the freshness of fishes. Among them the connection between freshness and headspace composition has been considered by gas chromatographic analysis and from the last two decades by a number of sensors and biosensors aimed at measuring some characteristic indicators (usually amines). More recently also the so-called artificial olfaction systems gathering together many non-specific sensors have shown a certain capability to transduce the global composition of the fish headspace capturing the differences between fresh and spoiled products. One of the main objectives related to the introduction of sensor systems with respect to the analytical methods is the claimed possibility to distribute the freshness control since sensors are expected to be "portable" and "simple". In spite of these objectives, until now sensor systems did not result in any tool that may be broadly distributed. In this paper, we present a chemical sensor array where the optical features of layers of chemicals, sensitive to volatile compounds typical of spoilage processes in fish, are interrogated by a very simple platform based on a computer screen and a web cam. An array of metalloporphyrins is here used to classify fillets of thawed fishes according to their storage days and to monitor the spoilage in filleted anchovies for a time of 8 h. Results indicate a complete identification of the storage days of thawed fillets and a determination of the storage time of anchovies held at room temperature with a root mean square error of validation of about 30 min. The optical system produces a sort of spectral fingerprint containing information about both the absorbance and the emission of the sensitive layer. The system here illustrated, based on computer peripherals, can be easily scaled to any device endowed with a programmable screen and a camera such as cellular phones offering for the first time the possibility to fulfil the sensor expectation of diffused and efficient analytical capabilities. © 2006 Elsevier B.V. All rights reserved.

  • 12.
    Anderson, Tony
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Suska, Anke
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Johansson, Therese
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Svensson, Samuel
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Frog melanophores cultured on fluorescent microbeads: Biomimic-based biosensing2005In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 21, no 1, p. 111-120Article in journal (Refereed)
    Abstract [en]

    Melanophores are pigmented cells in lower vertebrates capable of quick color changes and thereby suitable as whole cell biosensors. In the frog dermis skin layer, the large and dark pigmented melanophore surrounds a core of other pigmented cells. Upon hormonal stimulation the black-brown pigment organelles will redistribute within the melanophore, and thereby cover or uncover the core, making complex color changes possible in the dermis. Previously, melanophores have only been cultured on flat surfaces. Here we mimic the three dimensional biological geometry in the frog dermis by culturing melanophores on fluorescent plastic microbeads. To demonstrate biosensing we use the hormones melatonin and α-melanocyte stimulating hormone (α-MSH) as lightening or darkening stimuli, respectively. Cellular responses were successfully demonstrated on single cell level by fluorescence microscopy, and in cell suspension by a fluorescence microplate reader and a previously demonstrated computer screen photo-assisted technique. The demonstrated principle is the first step towards "single well/multiple read-out" biosensor arrays based on suspensions of different selective-responding melanophores, each cultured on microbeads with distinctive spectral characteristics. By applying small amount of a clinical sample, or a candidate substance in early drug screening, to a single well containing combinations of melanophores on beads, multiple parameter read-outs will be possible. © 2004 Elsevier B.V. All rights reserved.

  • 13.
    Andersson, Mike
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Holmberg, Martin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Martensson, P.
    Paolesse, R.
    Department of Chemical Science and Technology, University of Rome (Tor Vergata), via della Ricerca Scientifica, 00133 Rome, Italy.
    Falconi, C.
    Department of Electronic Engineering, University of Rome (Tor Vergata), Via di Tor Vergata 110, 00133 Rome, Italy.
    Proietti, E.
    Department of Electronic Engineering, University of Rome (Tor Vergata), Via di Tor Vergata 110, 00133 Rome, Italy.
    Di, Natale C.
    Di Natale, C., Department of Electronic Engineering, University of Rome (Tor Vergata), Via di Tor Vergata 110, 00133 Rome, Italy.
    D'Amico, A.
    Department of Electronic Engineering, University of Rome (Tor Vergata), Via di Tor Vergata 110, 00133 Rome, Italy.
    Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer2001In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 77, no 1-2, p. 567-571Article in journal (Refereed)
    Abstract [en]

    The interaction of chemical species with molecular films of porphyrins causes variations of the work function of the film itself, as it has been recently demonstrated by using the Kelvin probe technique. This characteristic makes porphyrins films suitable to be used as sensitive layers in ChemFET sensors. In this paper, we present a preliminary report about the fabrication and testing of such gas sensitive devices. The technological solutions towards an optimised device are also illustrated and discussed. © 2001 Elsevier Science B.V.

  • 14.
    Andersson, Tony P. M.
    et al.
    Linköping University, Department of Medicine and Care, Pharmacology. Linköping University, Faculty of Health Sciences.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Svensson, Samuel P. S.
    Linköping University, Department of Medicine and Care, Pharmacology. Linköping University, Faculty of Health Sciences.
    Myosin V is the rate-determinative step in Xenopus melanophore aggregationManuscript (preprint) (Other academic)
    Abstract [en]

    In Xenopus melanophores, melatonin induce melanosome aggregation via activation of its receptor Mel1c, coupled to inhibitory G proteins, adenylate cyclase deactivation, cyclic adenosine 3':5'-monophosphate (cAMP) decrease, protein kinase A inhibition, protein phophatase 2A activation, and serine/threonine dephosphorylations. Myosin V is the motor protein responsible for transporting melanosomes along actin filaments. Myosin V has been demonstrated to be necessary for melanosome dispersion and to keep the dispersed state. We have previously shown that melatonin induce activation of phosphoinositide-3 kinase, mitogen-activated protein kinase and tyrosine phosphorylation of a 280-kDa protein. Here we characterize the kinetics of latrunculin A-induced aggregation, and show that latrunculin A aggregate melanophores with the same kinetics as melatonin. This indicates that the downstream mechanisms might be similar although their primary targets in the cells are totally different. We suggest that both drugs act by inhibiting myosin V, the rate-determinative step for melanosome aggregation. Our data suggest that dynein is not up regulated during aggregation, as previously suggested by others,

  • 15.
    Arbab, A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Evaluation of gas mixtures with high-temperature gas sensors based on silicon carbide1994In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 19, no 1-3, p. 562-565Article in journal (Refereed)
    Abstract [en]

    Field-effect devices with a catalytic metal gate are operated as gas sensors over a large temperature range by the use of 6H-silicon carbide (bandgap 2.9 eV) instead of silicon (1.1 eV) as the semiconducting material. We have produced metal-silicon dioxide-silicon carbide (MOSiC) capacitors with platinum as the gate metal that can be operated above 800-degrees-C. The sensitivity of the Pt-MOSiC devices to hydrogen and hydrocarbons was tested in various oxygen atmospheres. The response to mixtures of hydrogen and saturated hydrocarbons indicated the existence of two different sensing mechanisms.

  • 16.
    Arbab, A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices1993In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 15, no 1-3, p. 19-23Article in journal (Refereed)
    Abstract [en]

    Catalytic metal gate-silicon dioxide-silicon carbide (MOSiC) capacitors operating to about 800-degrees-C are used as high temperature gas sensor devices. Hydrogen or hydrogen containing molecules, which are dissociated on the catalytic metal surface, create a decrease of the flat band voltage of the MOS capacitor. The MOSiC devices with a platinum gate respond to saturated hydrocarbons in air at concentrations well below the explosion limits.

  • 17.
    Artursson, Tom
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Eklov, T
    Linkoping Univ, SSENCE, S-58183 Linkoping, Sweden Linkoping Univ, Appl Phys Lab, S-58183 Linkoping, Sweden Nord Sensor Technol, S-58330 Linkoping, Sweden Umea Univ, Chemometr Res Grp, S-90187 Umea, Sweden.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Martensson, P
    Sjostrom, M
    Linkoping Univ, SSENCE, S-58183 Linkoping, Sweden Linkoping Univ, Appl Phys Lab, S-58183 Linkoping, Sweden Nord Sensor Technol, S-58330 Linkoping, Sweden Umea Univ, Chemometr Res Grp, S-90187 Umea, Sweden.
    Holmberg, Martin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Drift correction for gas sensors using multivariate methods2000In: Journal of Chemometrics, ISSN 0886-9383, E-ISSN 1099-128X, Vol. 14, no 5-6, p. 711-723Article in journal (Refereed)
    Abstract [en]

    Drift is one of the most serious impairments afflicting gas sensors. It can be seen as a gradual change in the sensor response over a long period of time when the external conditions an constant. This paper presents a new simple drift counteraction method based on PCA and PLS. The basic idea is to remove the drift direction component from the measurements. The direction of the drift, p, is calculated from measurements for a reference gas. Projecting the sample gas measurements on this vector gives the score vector t. The drift component tp(T) can then he removed from the sample gas data, which we call component correction (CC). The method is tested on a data set based on a reduced factorial design with four gases and a concentration gradient of hydrogen. It is found that the method works efficiently for both cases. Copyright (C) 2000 John Wiley & Sons, Ltd.

  • 18.
    Arwin, Hans
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Bakker, Jimmy
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Computer screen photo-assisted measurement of intensity or polarization change of light upon interaction with a sample2006Patent (Other (popular science, discussion, etc.))
  • 19.
    Arwin, Hans
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Bakker, Jimmy
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    A computer as imaging ellipsometer: biosensing at home2006In: Europtrode VIII,2006, 2006Conference paper (Other academic)
  • 20.
    Arwin, Hans
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Bakker, Jimmy
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Computer screen photo-assisted ellipsometry2006In: 4th Workshop Ellipsometry,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 21.
    Assadi, A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Svensson, Christer
    Linköping University, Department of Science and Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Interaction of planar polymer Schottky barrier diodes with gaseous substances1994In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 20, no 1, p. 71-77Article in journal (Refereed)
    Abstract [en]

    Conducting polymers appear very attractive as sensor materials either as the gas-sensitive component or as a matrix for easy immobilization of a specific substrate. The planar Schottky barrier diode with poly(3-octylthiophene), P3OT, as the semiconductor is used as a sensor for the detection of different gas species. The shifts in the current-voltage (C-V) characteristics as well as the C-V characteristics of the diodes due to water and ethanol vapour, ammonia gas and nitric oxide gases are studied. Nitric oxide and ammonia give the largest and most specific changes of the C-V characteristics. Nitric oxide has a doping effect, which increases the reverse current, while ammonia is the only gas that causes a negative change in the forward bias current of the I-V curve. The planar configuration of the Schottky barrier diode facilitates the absorption of gaseous species in the environment, and provides a simple method for production of gas sensors.

  • 22.
    Bakker, Jimmy
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Arwin, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Biosensor for home use: using the computer as ellipsometer2006Other (Other (popular science, discussion, etc.))
    Abstract [en]

    Konferensbidrag (muntligt-1:a pris) vid "EUROPT(R)ODE VIII, Tübingen, Germany, 2-5 april

  • 23.
    Bakker, Jimmy
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Fluorescence based sensing in a CSPT setup2005In: Medicinteknikdagarna,2005, 2005Conference paper (Other academic)
  • 24.
    Bakker, Jimmy W. P.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Enhancing classification capabilities of computer screen photo-assisted fluorescence fingerprinting2005In: Sensors and Actuators B: Chemical, ISSN 0925-4005, Vol. 110, no 2, p. 190-194Article in journal (Refereed)
    Abstract [en]

    The separation of emission from transmitted light for the fingerprinting of fluorescent substances using a computer screen photo-assisted technique (CSPT) is demonstrated. CSPT is a technique for optical evaluation using a simple cell with just a standard computer set and a web camera as instrumentation. It has been demonstrated to be a versatile system for colorimetric and fluorescent fingerprinting. Here the omnidirectional property of fluorescent emission is utilized to separate it from the background, using a simple optical arrangement compatible with CSPT purposes. This enhances the classification capabilities and makes classification at sub-μM concentrations possible.

  • 25.
    Bakker, Jimmy W.P.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Computer screen photo-assisted off-null ellipsometry2006In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 45, no 30, p. 7795-7799Article in journal (Refereed)
    Abstract [en]

    The ellipsometric measurement of thickness is demonstrated using a computer screen as a light source and a webcam as a detector, adding imaging off-null ellipsometry to the range of available computer screen photoassisted techniques. The results show good qualitative agreement with a simplified theoretical model and a thickness resolution in the nanometer range is achieved. The presented model can be used to optimize the setup for sensitivity. Since the computer screen serves as a homogeneous large area illumination source, which can be tuned to different intensities for different parts of the sample, a large sensitivity range can be obtained without sacrificing thickness resolution.

  • 26.
    Bakker, Jimmy W.P.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Immunodetection using computer screen photo-assisted ellipsometry2008In: Physica Status Solidi. C: Current Topics in Solid State Physics, ISSN 1862-6351, Vol. 5, no 5, p. 1431-1433Article in journal (Refereed)
    Abstract [en]

    Detection of antibody-antigen reactions is demonstrated by measuring changes in reflectance of light polarized parallel to the plane of incidence, using a computer screen as light source and a web camera as detector, giving results similar to traditional off-null ellipsometry and in accordance with a simplified theoretical model.

  • 27.
    Bakker, Jimmy W.P.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Two-dimensional micro array fluorescence fingerprinting with a computer screen photo-assisted technique2005In: Spectral Imaging: Instrumentation, Applications, and Analysis III, 2005, p. 9-15Conference paper (Other academic)
    Abstract [en]

    Detection and classification of fluorescent dyes are demonstrated using a computer screen photo-assisted technique (CSPT). This technique has previously been demonstrated for analyzing fluorescence from 96 wells microtiterplates (200 µl per well) and from a single cuvette with some optics to enhance sensitivity. In this work a custom designed array of wells with a volume of approximately 1 mu;l is used. In order to measure such small volumes without saturating the detector, the transmitted light is masked by placing the sample between two crossed polarizers. This arrangement blocks nearly all the transmitted light, while the emitted light, which is nearly unpolarized, can still be detected. The lowest amount (concentration x volume) of analyte detectable in this setup is about 40 times smaller than in the previous setups.

  • 28.
    Baranzahi, Amir
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Andersson, B.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Gas sensitive field effect devices for high temperature1995In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 26, no 1-3, p. 165-169Article in journal (Refereed)
    Abstract [en]

    Field effect sensors based on metal-oxide-silicon carbide (MOSiC) devices are used as high temperature gas sensors. They are sensitive to, for example, saturated hydrocarbons and hydrogen and can be operated up to at least 800 degrees C, which make them suitable for several types of combustion control. A metal gate with two layer platinum and a buffer layer of tantalum silicide in between gave a large increase in the long term stability of the sensors. At temperatures below 600 degrees C, the response to ethane in oxygen was shown to have a threshold at a ratio of about 0.38 for the ethane-to-oxygen concentrations. Below this ratio, the surface can be considered as mainly oxygen covered and the response is small. Above this ratio the metal surface is probably mainly hydrogen covered and the response is considerably larger.

  • 29.
    Baranzahi, Amir
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Glavmo, M
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Carlsson, C
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Nytomt, J
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Salomonsson, P
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Jobson, E
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Haggendal, B
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Martensson, P
    Mecel AB, Åmål, Sweden; AB Volvo Technol Dev, Gothenburg, Sweden.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases1997In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 43, no 1-3, p. 52-59Article in journal (Refereed)
    Abstract [en]

    Field effect devices based on catalytic metal-oxide-silicon carbide (MOSiC) structures can be used as high temperature gas sensors. The devices are sensitive to hydrocarbons and hydrogen and can be operated up to at least 900 degrees C, which make them suitable for several combustion applications, Simulated and real exhaust gases from a car engine have been studied at sensor temperatures from 200 to 650 degrees C, and it was round that the sensor signal is high for excess hydrocarbon and low for excess oxygen. The response time is less than 100 ms and only a small degradation of the devices was observed after several days of operation. The devices also react to changes of the gas composition In the fuel-rich and fuel-lean region. The devices show an interesting temperature dependence in the fuel rich region.

  • 30.
    Baranzahi, Amir
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Reversible hydrogen annealing of metal‐oxide‐silicon carbide devices at high temperatures1995In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 67, no 21, p. 3203-3205Article in journal (Refereed)
    Abstract [en]

    We report on a reversible hydrogen annealing effect observed in platinum-silicon dioxide-silicon carbide structures at temperatures above about 650 degrees C. It appears as a decrease of the inversion capacitance in the presence of hydrogen. This phenomenon is shown to depend on hydrogen atoms, created on the catalytic metal, that pass through the oxide and interact with charge generation sites at the oxide-silicon carbide interface. The consequence of the observation for chemical sensors based on silicon carbide is discussed. The results are phenomenological, since no details of the annealing chemistry could be developed from the present experiments. We find, however, that the annealing process and its reversal have activation energies of about 0.9 eV and 2.9 eV/site,respectively.

  • 31.
    Baranzahi, Amir
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Tobias, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Mårtensson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Ekedahl, Lars Gunnar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Chemical sensors with catalytic metal gates - Switching behavior and kinetic phase transitions1998In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 145, no 10, p. 3401-3406Article in journal (Refereed)
    Abstract [en]

    Rapid transitions in the response of platinum-based chemical sensors occurring at given hydrogen-oxygen concentration ratios are explained by kinetic phase transitions or switching phenomena on the catalytic metal surface. Below the transition point the response of platinum-insulator silicon carbide devices is small and above the transition it is large. It is found that the critical ratio depends on the operation temperature and the properties of the device. Three different cases are identified, namely, injection-, diffusion-, and reaction-rate-determined transitions. At sufficiently large temperatures the transition is injection limited and occurs at the stoichiometric ratio of hydrogen and oxygen in the gas mixture. The implications of the experimental observations on the applications of chemical sensors with catalytic sensing layers are discussed.

  • 32.
    Baranzahi, Amir
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Tobias, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Mårtensson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Ekedahl, Lars-Gunnar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Kinectic phase transitions and chemical sensors with catalytic metal gates1997In: Chemical & Biological Sensors & Analytical Electrochemical Methods, 1997, Electrochemical Society , 1997, Vol. 97, no 19, p. 1-15Conference paper (Other academic)
    Abstract [en]

    Rapid transitions in the response of platinum based chemical sensors occurring at given hydrogen-oxygen concentration ratios are explained by kinetic phase transitions or switching phenomena on the catalytic metal surface. Below the transition point the response of platinum-insulator silicon carbide devices is small and above the transition large and almost saturated. It is found that the critical ratio depends on the operation temperature and the properties of the device. Three different cases are identified, namely injection-, diffusion- and reaction rate determined transitions. At sufficiently large temperatures the transition is injection limited and occurs at the stoichiometric ratio of hydrogen and oxygen in the gas mixture. The implications of the experimental observations on the applications of chemical sensors with catalytic sensing layers are discussed.

  • 33. Barkå, Jonas
    et al.
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Background compensation in computer screen photo-assisted reflectance fingerprinting2006In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 120, no 1, p. 79-85Article in journal (Refereed)
    Abstract [en]

    The computer screen photo-assisted technique (CSPT) is a method for the classification of colorimetric assays utilizing ordinary computer sets and web cameras as instrumentation. In CSPT measurements the web camera captures the image of the assay under the screen illumination, and typically a spurious spatial distribution of intensities is overlapped on the image. This issue is examined here, focusing on the effect of the sample and illuminating colors on the spatial modulation of intensity. A method for the selection of colors composing an illuminating sequence that minimizes the spatial variability is proposed. The approach is tested for the classification of different color substances showing improvements up to 53% of the intra/inter cluster distance ratio measured in a PCA space, when compared to randomly chosen colors. © 2006 Elsevier B.V. All rights reserved.

  • 34.
    Bazzicalupi, Carla
    et al.
    University of Florence, Italy .
    Caltagirone, Claudia
    University of Cagliari, Italy .
    Cao, Zenfeng
    University of Roma Tor Vergata, Italy E China University of Science and Technology, Peoples R China .
    Chen, Qibin
    E China University of Science and Technology, Peoples R China .
    Di Natale, Corrado
    University of Roma Tor Vergata, Italy .
    Garau, Alessandra
    University of Cagliari, Italy .
    Lippolis, Vito
    University of Cagliari, Italy .
    Lvova, Larisa
    University of Roma Tor Vergata, Italy St Petersburg State University, Russia .
    Liu, Honglai
    E China University of Science and Technology, Peoples R China .
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Mostallino, M. Cristina
    Ist Neurosci CNR Cagliari, Italy .
    Nieddu, Mattia
    University of Cagliari, Italy .
    Paolesse, Roberto
    University of Roma Tor Vergata, Italy .
    Prodi, Luca
    University of Bologna, Italy .
    Sgarzi, Massimo
    University of Bologna, Italy .
    Zaccheroni, Nelsi
    University of Bologna, Italy .
    Multimodal Use of New Coumarin-Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg2+ Probing2013In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 43, p. 14639-14653Article in journal (Refereed)
    Abstract [en]

    Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg2+ ion binding, the development of fluorescence-based devices for in-field Hg2+ detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg2+ ions in MeCN/H2O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg2+ ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg2+ ions in natural water samples.

  • 35.
    Berggren, Karl-Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Cederwall, Martin
    Chalmers.
    Forssell-Aronsson, Eva
    Sahlgrenska akademin.
    Fredriksson, Billy
    Vetenskapsrådets ämnesråd för naturvetenskap och teknik.
    Goksör, Mattias
    Göteborgs universtitet.
    Häggström, Olle
    Chalmers.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Mårtensson, Ann-Sofie
    Högskolan i Borås.
    Sandelius, Anna Stina
    Göteborgs universitet.
    Wennberg, Ann-Marie
    Sahlgrenska universitetssjukhuset.
    Stärk matematiken och naturvetenskapen i nya gymnasiet2010In: NyTeknikArticle in journal (Other (popular science, discussion, etc.))
  • 36.
    Bjorklund, Robert
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Automatic optimization of experimental conditions for fast evaluation of diagnostic tests using ubiquitous instrumentation2008In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 134, no 1, p. 199-205Article in journal (Refereed)
    Abstract [en]

    Rapid quantitative determinations of creatinine, potassium and glucose, all important parameters in routine medical diagnostics, are demonstrated using a computer screen photo-assisted technique (CSPT). CSPT uses regular computer screens as light sources and web cameras as imaging detectors for supporting optical evaluations of diverse character. The ubiquity and versatility of the setup, makes CSPT an attractive candidate for point of care determinations. A robust procedure for the automatic selection of experimental conditions in CSPT evaluation, including camera channels and illuminating colors that minimize the measuring time up to 5 times is described. The method utilizes the correlation between experimental conditions and classification scores, obtained under a generic 50 color training session, to extract measuring sequences as short as 9 s. The extracted measuring conditions automatically adapted to the different tests provided a general, practical and fast approach for CSPT optimization in real scenarios. © 2008 Elsevier B.V. All rights reserved.

  • 37.
    Bjorklund, Robert
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Filippini, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Generation of illuminating sequences for the computer screen photo-assisted evaluation of creatinine2006Other (Other (popular science, discussion, etc.))
    Abstract [en]

    Poster på konferensen " Eurosensors XX, Göteborg, Sweden, 17-20 sept.

  • 38.
    Bjorklund, Robert
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Karlsson, Susanne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Borén, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Analytical Chemistry .
    Allard, E
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Linkoping Univ, Dept Water & Environm Studies, S-58183 Linkoping, Sweden.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Photodesorption of fulvic acid from iron oxide surfaces into aqueous solutions2001In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 174, no 2, p. 166-175Article in journal (Refereed)
    Abstract [en]

    Photodesorption of thin films of fulvic acid adsorbed on planar iron oxide surfaces was monitored by ellipsometry. Description was first observed at 546 nm, and additional fractions of the adsorbed acid left the surfaces at 405 and 365 nm Similar kinetics for photodesorption was observed from metallic iron films and from porous iron oxide prepared electrochemically by deposition on porous silicon substrates. Soluble photoproducts leaving the surface H ere monitored by UV absorbance spectroscopy at 200 nm Gaseous products were not detected by mass spectrometry but the results seemed to indicate that net all of the photoproducts entered the liquid phase. Of the metal films tested which adsorbed fulvic acid from aqueous solution (Fe. Cr, Ni, Al, and Pt), it was only iron which exhibited a photodesorption effect. (C) 2001 Elsevier Science B.V. All rights reserved.

  • 39.
    Björefors, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ekeroth, Johan
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Borgh, Annika
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Konradsson, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry .
    Electrochemical Analysis of Self-Assembled Monolayers2001In: Analysdagarna,2001, 2001Conference paper (Refereed)
  • 40.
    Bohme, O
    et al.
    Tech Univ Cottbus, D-03044 Cottbus, Germany Linkoping Univ, Swedish Sensor Ctr, S-58183 Linkoping, Sweden.
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Schmeisser, D
    Tech Univ Cottbus, D-03044 Cottbus, Germany Linkoping Univ, Swedish Sensor Ctr, S-58183 Linkoping, Sweden.
    Nanoparticles as the active element of high-temperature metal-insulator-silicon carbide gas sensors2001In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 13, no 8, p. 597-+Article in journal (Refereed)
    Abstract [en]

    The sensor performance of MISiC (metal-insulator-silicon carbide) diode devices depends on their temperature pretreatment: an activation step at 600 degreesC leads to fast-responding devices with extraordinarily high signals but the devices fail when operated above 700 degreesC. The authors focus on the key role of nanoparticles in high-temperature gas sensor applications of these MISiC devices, presenting a model in which the interface dipole moment of nanoparticles is seen as the driving force and explaining the difference in response of capacitor-configuration and Schottky-diode-configuration devices.

  • 41.
    Briand, D.
    et al.
    Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland.
    Sundgren, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Van, Der Schoot B.
    Van Der Schoot, B., Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    De, Rooij N.F.
    De Rooij, N.F., Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland.
    Thermally isolated MOSFET for gas sending application2001In: IEEE Electron Device Letters, ISSN 0741-3106, E-ISSN 1558-0563, Vol. 22, no 1, p. 11-13Article in journal (Refereed)
    Abstract [en]

    This work reports on thermally isolated electronic components for gas sensing applications. The device is composed of an array of 4 MOSFET, a diode and a semiconductor resistor integrated on a micro-hotplate, which is fabricated using bulk micromachining of silicon. The thermal efficiency of the device is 2°C/mW with a thermal constant less than 100 ms. Holes are made in the passivation film over the gates of the MOSFET and gas sensitive films deposited on top of the gate insulator. The low thermal mass device realized allows new modes of operation for MOSFET gas sensors such as a combination of the field and thermal effects and a pulsed temperature mode of operation.

  • 42.
    Briand, D.
    et al.
    Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland, Actuators and Microsystems Lab., Institute of Microtechnology, Neuchâtel, Switzerland.
    Van, Der Schoot B.
    Van Der Schoot, B., Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland.
    De, Rooij N.F.
    De Rooij, N.F., Institute of Microtechnology, University of Neuchâtel, CH-2007 Neuchâtel, Switzerland, Research and Development Department, Cordis Europa N.V., Roden, Netherlands, Institute of Microtechnology, University of Neuchâtel, Neuchâtel, Switzerland.
    Sundgren, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Low-power micromachined MOSFET gas sensor2000In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 9, no 3, p. 303-308Article in journal (Refereed)
    Abstract [en]

    This paper reports on the design, fabrication, and characterization of the first low-power consumption MOSFET gas sensor. The novel MOSFET array gas sensor has been fabricated using anisotropic bulk silicon micromachining. A heating resistor, a diode used as temperature sensor, and four MOSFETs are located in a silicon island suspended by a dielectric membrane. The membrane has a low thermal conductivity coefficient and, therefore, thermally isolates the electronic components from the chip frame. This low thermal mass device allows the reduction of the power consumption to a value of 90 mW for an array of four MOSFETs at an operating temperature of 170 °C. Three of the MOSFETs have their gate covered with thin catalytic metals and are used as gas sensors. The fourth one has a standard gate covered with nitride and could act as a reference. The sensor was tested under different gaseous atmospheres and has shown good gas sensitivities to hydrogen and ammonia. The low-power MOSFET array gas sensor presented is suitable for applications in portable gas sensor instruments, electronic noses, and automobiles.

  • 43.
    Briand, D.
    et al.
    Institute of Microtechnology, University of Neuchâtel, P.O. Box 3, CH-2007 Neuchâtel, Switzerland.
    Wingbrant, Helena
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Sundgren, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Van, der Schoot B.
    Van der Schoot, B., Institute of Microtechnology, University of Neuchâtel, P.O. Box 3, CH-2007 Neuchâtel, Switzerland.
    Ekedahl, Lars-Gunnar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    De, Rooij N.F.
    De Rooij, N.F., Institute of Microtechnology, University of Neuchâtel, P.O. Box 3, CH-2007 Neuchâtel, Switzerland.
    Modulated operating temperature for MOSFET gas sensors: Hydrogen recovery time reduction and gas discrimination2003In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 93, no 1-3, p. 276-285Conference paper (Other academic)
    Abstract [en]

    This communication presents a modulated mode of operation for MOSFET gas sensors. A low-power micromachined device allows pulsing the temperature of MOSFET gas sensors with a time constant less than 100ms. Modulating the temperature during the gas exposure modifies the kinetics of the gas reactions with the sensing film. The way the sensor response is modified by the temperature modulation depends on the sensor "history", on the nature of the surrounding gaseous atmosphere, and on the type of materials used as catalytic sensing film. Pulsing the temperature up just after the gas exposure can reduce the recovery time for specific applications, such as for hydrogen detection. Cycling the temperature can allow the discrimination between different gas mixtures. Discrimination was shown for gaseous mixtures of hydrogen and ammonia in air. The results obtained indicate that a "smart" combination of sample and temperature profile could be used to expand the information content in the sensor response. © 2003 Elsevier Science B.V. All rights reserved.

  • 44.
    Cao, Z.
    et al.
    Department of Chemical Science and Technologies, University of Tor Vergata, Rome, Italy, Department of Chemistry and Molecular Engineering, East China University of of Science and Technology, Shanghai, China.
    Lvova, L.
    Department of Chemical Science and Technologies, University of Tor Vergata, Rome, Italy, Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg, Russia.
    Paolesse, R.
    Department of Chemical Science and Technologies, University of Tor Vergata, Rome, Italy.
    Di Natale, C
    Department of Electronic Engineering, University of Tor Vergata, Rome, Italy.
    D' Amico, A.
    Department of Electronic Engineering, University of Tor Vergata, Rome, Italy.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Porphyrin electropolymers as opto-electrochemical probe for the detection of red-ox analytes2014In: Sensors: Proceedings of the First National Conference on Sensors, Rome 15-17 February, 2012, Springer Science Business Media , 2014, Vol. 162 LNEE, p. 49-55Conference paper (Refereed)
    Abstract [en]

    The application of pyrrole-substituted porphyrin electropolymers for simultaneous optical and electrochemical analysis of red-ox active analytes, namely diazo-conjugated dyes of Sudan family, is presented. Sudan colorants are widely used in many fields, but accurate screening of their consumption is required due to their high toxicity. The inherent electrochemical activity of Sudan dyes, as far as their intense coloration, makes possible to find the appropriate conditions of hybrid optical and electrochemical porphyrin electropolymer based sensor array system application. This approach allowed a significant increase in the chemical information, improving the analytical system performance in terms of selectivity and sensitivity, and permitted the fast and simple monitoring of Sudan dye analytes.

  • 45.
    Carlsson, Jenny
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Gullstrand, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Winquist, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Detection of global glycosylation changes of serum proteins in type 1 diabetes using a lectin panel and multivariate data analysis2008In: Talanta: The International Journal of Pure and Applied Analytical Chemistry, ISSN 0039-9140, E-ISSN 1873-3573, Vol. 76, no 2, p. 333-337Article in journal (Refereed)
    Abstract [en]

    Global glycosylation changes of serum proteins in type 1 diabetic patients have in this paper been investigated based on the interaction of the saccharide moiety of serum proteins with different lectins. Lectins are proteins, which bind carbohydrates specifically and reversibly. Panels with lectins of various carbohydrate specificities were immobilized on gold surfaces. Sera from healthy individuals, newly diagnosed type 1 diabetes patients and type 1 diabetes patients having had the disease for 4–6 years, respectively, were applied to the lectin panel. The biorecognition was evaluated with null ellipsometry. Data obtained were related to an internal standard of lactoferrin. Multivariate data analysis (MVDA) techniques were used to analyze data.

    Principal component analysis showed that the lectin panel enabled discrimination between sera from the three different above-mentioned groups. Using an artificial neuronal net (ANN), it was possible to correctly categorize unknown serum samples into one of the three groups.

     

  • 46.
    Carlsson, Jenny
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Mecklenburg, Michael
    nanoArc Corp, Newport Beach, CA, USA.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Danielsson, Bengt
    Pure and Applied Biochemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden .
    Winquist, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry2005In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 530, no 2, p. 167-171Article in journal (Refereed)
    Abstract [en]

    Serum proteins of different species and of different human blood groups exhibit various protein glycosylation patterns. Sera from human, pig, sheep and guinea pig have been applied to a panel of eight different lectins immobilized on a gold wafer. The biorecognition has been evaluated with scanning ellipsometry and the two-dimensional matrices obtained have been treated with image analysis and MVDA for evaluation. The results showed a clear difference in protein binding pattern between the different species and thereby separation of the different sera could be made. Dendograms indicate that human and pig sera are the most related of the four different sera investigated.

  • 47.
    Carlsson, Jenny
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Winquist, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Danielsson, Bengt
    Pure and Applied Biochemistry, Lund University, SE-22 100 Lund, Sweden .
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Biosensor discrimination of meat juice from various animals using a lectin panel and ellipsometry2005In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 547, no 2, p. 229-236Article in journal (Refereed)
    Abstract [en]

    In this work, simple microcontact printed gold-wafers were used to make a lectin panel for investigation and discrimination of different meat juices from fresh meat of cattle, chicken, pig, cod, turkey and lamb. Seven different lectins were thus attached to gold surfaces using the streptavidin–biotin method. Lectins recognize and bind specifically to carbohydrate structures present on different proteins. The biorecognition was evaluated with null ellipsometry and the data obtained was related to an internal standard of lactoferrin. The data was evaluated with multivariate data analysis techniques to identify possible discrimination or grouping of data. Scanning ellipsometry was used for visualization of the binding pattern of the lectins and the meat juice proteins. The two-dimensional images obtained could be used to visualize the protein distribution, furthermore, to exclude anomalies. The results showed that the different meat juices from the six different species: cattle, chicken, pig, cod, turkey and lamb could be discriminated from each other. The results showed to be more repetitive for the mammalian meat juices. Using a simple model based on an artificial neuronal net, it was also possible to classify meat juices from the mammals investigated.

  • 48.
    Dannetun, Helen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Petersson, L.-G.
    Dehydrogenation of acetylene and ethylene studied on clean and oxygen covered palladium surfaces1986In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 173, p. 148-Article in journal (Refereed)
    Abstract [en]

    The interaction of acetylene and ethylene with a clean and oxygen covered Pd surface has been studied at a temperature of 473 K. The measurements were performed on a hydrogen sensitive Pd-MOS structure making it possible to obtain direct information on the dissociation of both hydrogen and oxygen containing species on a palladium surface. Desorption studies were also performed as well as ultraviolet photoelectron spectroscopy and work function measurements. The studies show that both acetylene and ethylene adsorb dissociatively at this temperature leaving mainly carbon on the surface. When an oxygen covered Pd surface is exposed to C2H2 or C2H4 carbon dioxide and water will be formed and desorb until the surface is oxygen free. In the case of acetylene the presence of preadsorbed oxygen does not block or prevent the C2H2 dissociation on the surface. For C2H4, a large preadsorbed oxygen coverage ( 0.45) will have an impeding effect on the dissociation. The CO2 desorption is oxygen coverage dependent contrary to the H2O desorption. This is due to the fact that hydrogen has a large lateral mobility on the surface while carbon has not. Both the CO2 and H2O reactions are, however, due to the same type of mechanisms.

  • 49.
    Dannetun, Helen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Petersson, L.-G.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Dehydrogenation rate of some unsaturated hydrocarbons on clean and oxygen covered palladium1987Conference paper (Refereed)
  • 50.
    Dannetun, Helen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Petersson, L.-G.
    Detection of hydrogen from the photodissociative splitting of water through hydrogen-oxygen separation over a thin Pd film1991In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 70, p. 453-Article in journal (Refereed)
    Abstract [en]

    The photodissociative splitting of water has been studied in gas phase on a plane solid surface. A hydrogen sensitive Pd‐metal‐oxide‐semiconductor (MOS) structure was coated with 1–2 nm TiOx and exposed to water vapor and ultraviolet light. A natural separation of the produced hydrogen and oxygen occurs over the Pd film of the structure and the produced hydrogen is monitored by the electric behavior of the MOS device. The results suggest that suitably treated thin Pd membranes may be of interest for studying the continuous photodissociation of water.

1234567 1 - 50 of 319
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf