liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andersson, Olof
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Ekblad, Tobias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study2009Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 10, nr 1, s. 142-148Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A biosensor matrix based on UV-initiated graft copolymerized poly(ethylene glycol) methacrylate and 2-hydroxyethyl methacrylate has been studied using imaging surface plasmon resonance (iSPR). By using a photo mask and a programmable shutter to vary the exposure time laterally, a gradient of matrix spots with physical thicknesses ranging from a few to tens of nanometers was generated. To maximize the dynamic range, imaging SPR was employed in wavelength interrogation mode. By finding the minimum in the reflectance spectra from each pixel of an image, SPR wavelength maps were constructed. The shift in SPR wavelength upon biospecific interaction was then measured both as a function of matrix thickness and composition. The performance of the matrix was evaluated in terms of immobilization of human serum albumin, biomolecular interaction with its antibody, and nonspecific binding of human fibrinogen. In addition, a low molecular weight interaction pair based on a synthetic polypeptide and calmodulin was also studied to explore the size selectivity of the hydrogel matrix. Our results show that the gradient matrix exhibits excellent properties for quick evaluation and screening of optimal hydrogel performance. The mixed hydrogel matrices display very low levels of nonspecific binding. It is also evident that the low molecular weight calmodulin is capable of freely diffusing and interacting throughout the entire hydrogel matrix, whereas the much larger albumin and its corresponding antibody, in particular, are partly/completely hindered from penetrating the interior of the matrix. This size-selectivity is attributed to a significant UV-initiated cross-linking or branching of the matrix during fabrication and/or protein mediated multipoint attachment during immobilization.

  • 2.
    Andersson, Olof
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Ekblad, Tobias
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Liedberg, Bo
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Imaging surface plasmon resonance studies of hydrogel and gradient surfaces for biosensor and array applications2008Ingår i: Europtrode IX,2008, 2008Konferensbidrag (Övrigt vetenskapligt)
  • 3.
    Ekblad, Tobias
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Faxälv, Lars
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Klinisk kemi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Laboratoriemedicinskt centrum, Klinisk kemi.
    Andersson, Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Wallmark, Nanny
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Lindahl, Tomas L.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Klinisk kemi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Laboratoriemedicinskt centrum, Klinisk kemi.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Patterned Hydrogels for Controlled Platelet Adhesion from Whole Blood and Plasma2010Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 20, nr 15, s. 2396-2403Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work describes the preparation and properties of hydrogel surface chemistries enabling controlled and well-defined cell adhesion. The hydrogels may be prepared directly on plastic substrates, such as polystyrene slides or dishes, using a quick and experimentally simple photopolymerization process, compatible with photolithographic and microfluidic patterning methods. The intended application for these materials is as substrates for diagnostic cell adhesion assays, particularly for the analysis of human platelet function. The adsorption of fibrinogen and other platelet promoting molecules is shown to be completely inhibited by the hydrogel, provided that the film thickness is sufficient (>5 nm). This allows the hydrogel to be used as a matrix for presenting selected bioactive ligands without risking interference from nonspecifically adsorbed platelet adhesion factors, even in undiluted whole blood and blood plasma. This concept is demonstrated by preparing patterns of proteins on hydrogel surfaces, resulting in highly controlled platelet adhesion. Further insights into the protein immobilization and platelet adhesion processes are provided by studies using imaging surface plasmon resonance. The hydrogel surfaces used in this work appear to provide an ideal platform for cell adhesion studies of platelets, and potentially also for other cell types.

  • 4.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Biochip design based on tailored ethylene glycols2007Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Det är intressant att studera biomolekylära interaktioner av många anledningar. För att kunna bedriva framgångsrik läkemedelsutveckling är det oerhört viktigt att känna till hur olika molekyler samverkar i människokroppen. Inom sjukvården kan biomolekyler användas som biomarkörer, då närvaro av dem eller förändringar av deras koncentrationer är kopplade till sjukdomstillstånd, och därmed hjälper läkaren att ställa rätt diagnos. Dessutom kan de mycket specifika interaktionerna mellan antikroppar och (i princip) valfri substans användas för detektion av spårämnen vid miljösaneringsarbete, gränskontroller, polisarbete, fängelser och arbete med nationell säkerhet.

    Den här avhandlingen beskriver hur polymeren polyetylenglykol (PEG) kan användas vid design av biochip. Ett biochip är en liten anordning, som kan användas för att detektera specifika molekyler med hjälp av en biologisk interaktion. Traditionellt har PEG använts inom biomaterialsektorn, men återfinns även i hygienartiklar som tvål och tandkräm. Ett annat användningsområde är konservering av bärgade träskepp och i en del litiumjonbatterier ingår PEG som en komponent. Dessutom pågår utveckling av PEG-innehållande skyddsvästar. I det här arbetet används PEG framför allt på grund av sin förmåga att minimera ospecifik inbindning av proteiner, som utgör en stor del av gruppen biomolekyler, till ytor på biochip. Två olika typer av ytbeläggningar, som innehåller den här polymeren, har använts. Den första typen ger mycket tunna (~0.000003 mm), tvådimensionella filmer medan den andra ger en något tjockare (~0.00005 mm), tredimensionell struktur (matris). De tvådimensionella filmerna har använts för att utveckla en sprängämnesdetektor med mycket hög känslighet (detektionsgräns mellan 1-10 ppb). En viktig beståndsdel i detta system är antikroppar riktade mot sprängämnet trinitrotoluen (TNT). Den tredimensionella matrisen är mer generell och kan användas för att studera många olika molekylära interaktioner. Tillverkningsmetoden av matrisen är baserad på belysning med ultraviolett ljus och är därmed lämpad för att skapa mönstrade ytor. Genom att blockera delar av ljusflödet begränsas tillväxten av matrisen till de belysta delarna. På så sätt har bland annat så kallade mikro-arrayer, bestående av mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster, tillverkats. Tekniken tillåter även tillverkning av gradienter, där matrisens tjocklek varierar längs med provet, genom att belysa olika delar av provytan olika länge. Genom att undersöka dessa gradienter har information om matrisens genomsläpplighet för proteiner kunnat extraheras. Gradientkonceptet har även kombinerats med mikro-arraytillverkningen och gett möjlighet att studera interaktioner mellan flera olika modellproteiner och deras motsvarande antikroppar i olika tjocka matriser på en och samma yta.

    Det finns ett stort antal sätt att utnyttja interaktionerna mellan olika molekyler på ett biochip. Ett tilltalande tillvägagångssätt är exempelvis att i en mikro-array binda in olika molekyler som kan fånga kliniskt intressanta biomolekyler, i syfte att skapa en hälsoprofil. Ett sådant biochip skulle ge möjlighet att parallellt detektera eller bestämma koncentrationen av ett stort antal biomolekyler i till exempel en droppe blod. På så sätt kan en diagnos snabbt ställas, kanske till och med utan att patienten behöver uppsöka sjukvården. Den utvecklade PEG-matrisen har god potential att fungera i en sådan applikation.

    Delarbeten
    1. A novel biochip technology for detection of explosives - TNT: Synthesis, characterisation and application
    Öppna denna publikation i ny flik eller fönster >>A novel biochip technology for detection of explosives - TNT: Synthesis, characterisation and application
    Visa övriga...
    2006 (Engelska)Ingår i: Sensors and Actuators B: Chemical, ISSN 0925-4005, Vol. 113, nr 2, s. 730-748Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    This contribution describes the synthesis, characterisation and evaluation of a novel biochip technology for the detection of the explosive substance 2,4,6-trinitrotoluene (TNT). Two types of thiols are self-assembled to produce the biochip on gold, namely oligo(ethylene glycol) (OEG)-alkyl thiols terminated with a hydroxyl group and a TNT-analogue (2,4-dinitrobenzene), respectively. Three different TNT-analogues are mixed in various proportions with hydroxyl-terminated OEG-thiols to obtain highly selective and sensitive biochips with a low non-specific binding. The produced self-assembled monolayers (SAMs) are thoroughly characterised with null ellipsometry, contact angle goniometry, infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) and they all meet high standards in terms of molecular conformation, packing and orientation. The biochip is designed to function as a platform for a competitive label-free immunoassay and two real-time transducers – surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) – are used to monitor the dissociation of on-line immobilised monoclonal antibodies produced against TNT. The three TNT-analogues are all potential candidates for the development of a functional biochip, though one of them displayed superior properties in terms of shorter recovery/stabilisation time after antibody immobilisation and a better response/loading capacity ratio. This is particularly evident when using low antigen (TNT-analogue) content in the mixed SAM.

    Nyckelord
    Explosives; Competitive immunoassay; Self-assembled monolayers; Quartz crystal microbalance; Surface plasmon resonance
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-14605 (URN)10.1016/j.snb.2005.07.025 (DOI)
    Tillgänglig från: 2007-10-12 Skapad: 2007-10-12 Senast uppdaterad: 2015-10-13
    2. Photografted poly(ethylene glycol) matrix for affinity interaction studies
    Öppna denna publikation i ny flik eller fönster >>Photografted poly(ethylene glycol) matrix for affinity interaction studies
    2007 (Engelska)Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 1, s. 287-295Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A poly(ethylene glycol) (PEG)-based matrix for studies of affinity interactions is developed and demonstrated. The PEG matrix, less than 0.1 μm thick, is graft copolymerized onto a cycloolefin polymer from a mixture of PEG methacrylates using a free radical reaction initiated by UV light at 254 nm. The grafting process is monitored in real time, and characteristics such as thickness, homogeneity, relative composition, photostability, and performance in terms of protein resistance in complex biofluids and sensor qualities are investigated with null ellipsometry, infrared spectroscopy, and surface plasmon resonance. The matrix is subsequently modified to contain carboxyl groups, thereby making it possible to immobilize ligands in a controlled and functional manner. Human serum albumin and fibrinogen are immobilized and successfully detected by antibody recognition using surface plasmon resonance. The results are encouraging and suggest that the PEG matrix is suitable for biochip and biosensor applications in demanding biofluids.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-14606 (URN)10.1021/bm060685g (DOI)
    Tillgänglig från: 2007-10-12 Skapad: 2007-10-12 Senast uppdaterad: 2017-12-13
    3. Poly(ethylene glycol) gradient for biochip development
    Öppna denna publikation i ny flik eller fönster >>Poly(ethylene glycol) gradient for biochip development
    2007 (Engelska)Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 23, nr 22, s. 11319-11325Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 Å over a distance of 5−20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection−absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-14607 (URN)10.1021/la700729q (DOI)
    Tillgänglig från: 2007-10-12 Skapad: 2007-10-12 Senast uppdaterad: 2017-12-13
    4. UV-patterned poly(ethylene glycol) matrix for microarray applications
    Öppna denna publikation i ny flik eller fönster >>UV-patterned poly(ethylene glycol) matrix for microarray applications
    2007 (Engelska)Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 11, s. 3511-3518Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties:  low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254−266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG−methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-14608 (URN)10.1021/bm700707s (DOI)
    Tillgänglig från: 2007-10-12 Skapad: 2007-10-12 Senast uppdaterad: 2017-12-13
    5. A hydrogel chip for biosensing studied by imaging surface plasmon resonance
    Öppna denna publikation i ny flik eller fönster >>A hydrogel chip for biosensing studied by imaging surface plasmon resonance
    Manuskript (Övrigt vetenskapligt)
    Identifikatorer
    urn:nbn:se:liu:diva-14609 (URN)
    Tillgänglig från: 2007-10-12 Skapad: 2007-10-12 Senast uppdaterad: 2010-01-13
  • 5.
    Larsson (Kaiser), Andréas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Angbrant, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Ekeroth, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Månsson, Per
    Biosensor Applications Sweden AB, Sundbyberg, Sweden.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    A novel biochip technology for detection of explosives - TNT: Synthesis, characterisation and application2006Ingår i: Sensors and Actuators B: Chemical, ISSN 0925-4005, Vol. 113, nr 2, s. 730-748Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This contribution describes the synthesis, characterisation and evaluation of a novel biochip technology for the detection of the explosive substance 2,4,6-trinitrotoluene (TNT). Two types of thiols are self-assembled to produce the biochip on gold, namely oligo(ethylene glycol) (OEG)-alkyl thiols terminated with a hydroxyl group and a TNT-analogue (2,4-dinitrobenzene), respectively. Three different TNT-analogues are mixed in various proportions with hydroxyl-terminated OEG-thiols to obtain highly selective and sensitive biochips with a low non-specific binding. The produced self-assembled monolayers (SAMs) are thoroughly characterised with null ellipsometry, contact angle goniometry, infrared reflection absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy (XPS) and they all meet high standards in terms of molecular conformation, packing and orientation. The biochip is designed to function as a platform for a competitive label-free immunoassay and two real-time transducers – surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) – are used to monitor the dissociation of on-line immobilised monoclonal antibodies produced against TNT. The three TNT-analogues are all potential candidates for the development of a functional biochip, though one of them displayed superior properties in terms of shorter recovery/stabilisation time after antibody immobilisation and a better response/loading capacity ratio. This is particularly evident when using low antigen (TNT-analogue) content in the mixed SAM.

  • 6.
    Larsson (Kaiser), Andréas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Du, Chun-Xia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    UV-patterned poly(ethylene glycol) matrix for microarray applications2007Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 11, s. 3511-3518Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties:  low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254−266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG−methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding.

  • 7.
    Larsson (Kaiser), Andréas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Ekblad, Tobias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Photografted poly(ethylene glycol) matrix for affinity interaction studies2007Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, nr 1, s. 287-295Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A poly(ethylene glycol) (PEG)-based matrix for studies of affinity interactions is developed and demonstrated. The PEG matrix, less than 0.1 μm thick, is graft copolymerized onto a cycloolefin polymer from a mixture of PEG methacrylates using a free radical reaction initiated by UV light at 254 nm. The grafting process is monitored in real time, and characteristics such as thickness, homogeneity, relative composition, photostability, and performance in terms of protein resistance in complex biofluids and sensor qualities are investigated with null ellipsometry, infrared spectroscopy, and surface plasmon resonance. The matrix is subsequently modified to contain carboxyl groups, thereby making it possible to immobilize ligands in a controlled and functional manner. Human serum albumin and fibrinogen are immobilized and successfully detected by antibody recognition using surface plasmon resonance. The results are encouraging and suggest that the PEG matrix is suitable for biochip and biosensor applications in demanding biofluids.

  • 8.
    Larsson (Kaiser), Andréas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Liedberg, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Poly(ethylene glycol) gradient for biochip development2007Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 23, nr 22, s. 11319-11325Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 Å over a distance of 5−20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection−absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.

  • 9.
    Liedberg, Bo
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Ekblad, Tobias
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Andersson, Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Photografted PEG matrix for biosensor applications2006Ingår i: Proceedings of the 9th Biosensors Congress,2006, Columbus: American Chemical Society , 2006Konferensbidrag (Refereegranskat)
  • 10.
    Viljanen, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    Larsson, Jenny
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Medicinsk mikrobiologi. Linköpings universitet, Hälsouniversitetet.
    Larsson (Kaiser), Andréas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Broo, Kerstin S.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    A Multipurpose Receptor Composed of Promiscuous Proteins. Analyte Detection through Pattern Recognition2007Ingår i: Bioconjugate Chemistry, ISSN 1043-1802, Vol. 18, nr 6, s. 1935-1945Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A multipurpose receptor akin to the “electronic nose” was composed of coumarin-labeled mutants of human glutathione transferase A1. We have previously constructed a kit for site-specific modification of a lysine residue (A216K) using a thiol ester of glutathione (GSC-Coubio) as a modifying reagent. In the present investigation, we scrambled the hydrophobic binding site (H-site) of the protein scaffold through mutations at position M208 via random mutagenesis and isolated a representative library of 11 A216K/M208X mutants. All of the double mutants could be site-specifically labeled to form the K216Cou conjugates. The labeled proteins responded to the addition of different analytes with signature changes in their fluorescence spectra resulting in a matrix of 96 data points per analyte. Ligands as diverse as n-valeric acid, fumaric acid monoethyl ester, lithocholic acid, 1-chloro-2,4-dinitrobenzene (CDNB), glutathione (GSH), S-methyl-GSH, S-hexyl-GSH, and GS-DNB all gave rise to signals that potentially can be interpreted through pattern recognition. The measured Kd values range from low micromolar to low millimolar. The cysteine residue C112 was used to anchor the coumarin-labeled protein to a PEG-based hydrogel chip in order to develop surface-based biosensing systems. We have thus initiated the development of a multipurpose, artificial receptor composed of an array of promiscuous proteins where detection of the analyte occurs through pattern recognition of fluorescence signals. In this system, many relatively poor binders each contribute to detailed readout in a truly egalitarian fashion.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf