liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alami, Jones
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Jon M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lattemann, Martina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Wallin, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Persson, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering2007Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 7-8, s. 3434-3438Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ta thin films were grown on Si substrates at different inclination angles with respect to the sputter source using high power impulse magnetron sputtering (HIPIMS), an ionized physical vapor deposition technique. The ionization allowed for better control of the energy and directionality of the sputtered species, and consequently for improved properties of the deposited films. Depositions were made on Si substrates with the native oxide intact. The structure of the as deposited films was investigated using X-ray diffraction, while a four-point probe setup was used to measure the resistivity. A substrate bias process-window for growth of bcc-Ta was observed. However, the process-window position changed with changing inclination angles of the substrate. The formation of this low-resistivity bcc-phase could be understood in light of the high ion flux from the HIPIMS discharge.

  • 2.
    Alami, Jones
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Gudmundsson, J. T.
    University of Iceland, Reykjavik.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Plasma dynamics in a highly ionized pulsed magnetron discharge2005Ingår i: Plasma sources science & technology (Print), ISSN 0963-0252, E-ISSN 1361-6595, Vol. 14, nr 3, s. 525-531Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on electrostatic probe measurements of a high-power pulsed magnetron discharge. Space- and time-dependent characteristics of the plasma parameters are obtained as functions of the process parameters. By applying high-power pulses (peak power of ~0.5 MW), with a pulse-on time of ~100 µs and a repetition frequency of 20 ms, peak electron densities of the order of ~1019 m− 3, i.e. three orders of magnitude higher than for a conventional dc magnetron discharge, are achieved soon after the pulse is switched on. At high sputtering gas pressures (>5 mTorr), a second peak occurs in the electron density curve, hundreds of microseconds after the pulse is switched off. This second peak is mainly due to an ion acoustic wave in the plasma, reflecting off the chamber walls. This is concluded from the time delay between the two peaks in the electron and ion saturation currents, which is shown to be dependent on the chamber dimensions and the sputtering gas composition. Finally, the electron temperature is determined, initially very high but decreasing rapidly as the pulse is turned off. The reduction seen in the electron temperature, close to the etched area of the cathode, is due to cooling by the sputtered metal atoms.

  • 3.
    Alami, Jones
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Persson, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Music, Denis
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Gudmundsson, J. T.
    University of Iceland, Reykjavik.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Ion-assisted Physical Vapor Deposition for enhanced film properties on non-flat surfaces2005Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 23, nr 2, s. 278-280Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.

  • 4.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Fundamentals of High Power Impulse Magnetron Sputtering2006Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    In plasma assisted thin film growth, control over the energy and direction of the incoming species is desired. If the growth species are ionized this can be achieved by the use of a substrate bias or a magnetic field. Ions may be accelerated by an applied potential, whereas neutral particles may not. Thin films grown by ionized physical vapor deposition (I-PVD) have lately shown promising results regarding film structure and adhesion. High power impulse magnetron sputtering (HIPIMS) is a relatively newly developed technique, which relies on the creation of a dense plasma in front of the sputtering target to produce a large fraction of ions of the sputtered material. In HIPIMS, high power pulses with a length of ~100 μs are applied to a conventional planar magnetron. The highly energetic nature of the discharge, which involves power densities of several kW/cm2, creates a dense plasma in front of the target, which allows for a large fraction of the sputtered material to be ionized.

    The work presented in this thesis involves plasma analysis using electrostatic probes, optical emission spectroscopy (OES), magnetic probes, energy resolved mass spectrometry, and other fundamental observation techniques. These techniques used together are powerful plasma analysis tools, and used together give a good overview of the plasma properties is achieved.

    from the erosion zone of the magnetron. The peak plasma density during the active cycle of the discharge exceeds 1019 electrons/m3. The expanding plasma is reflected by the chamber wall back into the center part of the chamber, resulting in a second density peak several hundreds of μs after the pulse is turned off.

    Optical emission spectroscopy (OES) measurements of the plasma indicate that the degree of ionization of sputtered Ti is very high, over 90 % in the peak of the pulse. Even at relatively low applied target power (~200 W/cm2 peak power) the recorded spectrum is totally dominated by radiation from ions. The recorded HIPIMS spectra were compared to a spectrum taken from a DC magnetron discharge, showing a completely different appearance.

    Magnetic field measurements performed with a coil type probe show significant deformation in the magnetic field of the magnetrons during the pulse. Spatially resolved measurements show evidence of a dense azimuthally E×B drifting current. Circulating currents mainly flow within 2 away cm from the target surface in an early part of the pulse, to later diffuse axially into the chamber and decrease in intensity. We record peak current densities of the E×B drift to be of the order of 105 A/m2.

    A mass spectrometry (MS) study of the plasma reveals that the HIPIMS discharge contains a larger fraction of highly energetic ions as compared to the continuous DC discharge. Especially ions of the target material are more energetic. Time resolved studies show broad distributions of ion energies in the early stage of the discharge, which quickly narrows down after pulse switch-off. Ti ions with energies up to 100 eV are detected. The time average plasma contains mainly low energy Ar ions, but during the active phase of the discharge, the plasma is highly metallic. Shortly after pulse switch-on, the peak value of the Ti1+/Ar1+ ratio is over 2. The HIPIMS discharge also contains a significant amount of doubly charged ions.

    Delarbeten
    1. Ionization of sputtered metals in high power pulsed magnetron sputtering
    Öppna denna publikation i ny flik eller fönster >>Ionization of sputtered metals in high power pulsed magnetron sputtering
    Visa övriga...
    2005 (Engelska)Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 23, nr 1, s. 18-22Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The ion to neutral ratio of the sputtered material have been studied for high power pulsed magnetron sputtering and compared with a continuous direct current (dc) discharge using the same experimental setup except for the power source. Optical emission spectroscopy (OES) was used to study the optical emission from the plasma through a side window. The emission was shown to be dominated by emission from metal ions. The distribution of metal ionized states clearly differed from the distribution of excited states, and we suggest the presence of a hot dense plasma surrounded by a cooler plasma. Sputtered material was ionized close to the target and transported into a cooler plasma region where the emission was also recorded. Assuming a Maxwell–Boltzmann distribution of excited states the emission from the plasma was quantified. This showed that the ionic contribution to the recorded spectrum was over 90% for high pulse powers. Even at relatively low applied pulse powers, the recorded spectra were dominated by emission from ions. OES analysis of the discharge in a continuous dc magnetron discharge was also made, which demonstrated much lower ionization.

    Nyckelord
    ionisation, excited states, sputter deposition, plasma deposition, plasma diagnostics
    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-13974 (URN)10.1116/1.1818135 (DOI)
    Tillgänglig från: 2006-09-12 Skapad: 2006-09-12 Senast uppdaterad: 2017-12-13
    2. Measurement of the magnetic field change in a pulsed high current magnetron discharge
    Öppna denna publikation i ny flik eller fönster >>Measurement of the magnetic field change in a pulsed high current magnetron discharge
    Visa övriga...
    2004 (Engelska)Ingår i: Plasma Sources Science and Technology, ISSN 0963-0252, Vol. 13, nr 4, s. 654-661Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    In this paper we present a study of how the magnetic field of a circular planar magnetron is affected when it is exposed to a pulsed high current discharge. Spatially resolved magnetic field measurements are presented and the magnetic disturbance is quantified for different process parameters. The magnetic field is severely deformed by the discharge and we record changes of several millitesla, depending on the spatial location of the measurement. The shape of the deformation reveals the presence of azimuthally drifting electrons close to the target surface. Time resolved measurements show a transition between two types of magnetic perturbations. There is an early stage that is in phase with the axial discharge current and a late stage that is not in phase with the discharge current. The later part of the magnetic field deformation is seen as a travelling magnetic wave. We explain the magnetic perturbations by a combination of E × B drifting electrons and currents driven by plasma pressure gradients and the shape of the magnetic field. A plasma pressure wave is also recorded by a single tip Langmuir probe and the velocity (~103 m s−1) of the expanding plasma agrees well with the observed velocity of the magnetic wave. We note that the axial (discharge) current density is much too high compared to the azimuthal current density to be explained by classical collision terms, and an anomalous charge transport mechanism is required.

    Nationell ämneskategori
    Fysik Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-13975 (URN)10.1088/0963-0252/13/4/014 (DOI)
    Tillgänglig från: 2006-09-12 Skapad: 2006-09-12 Senast uppdaterad: 2013-10-30
    3. Spatial electron density distribution in a high-power pulsed magnetron discharge
    Öppna denna publikation i ny flik eller fönster >>Spatial electron density distribution in a high-power pulsed magnetron discharge
    Visa övriga...
    2005 (Engelska)Ingår i: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 33, nr 2, s. 346-347Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The spatial electron density distribution was measured as function of time in a high-power pulsed magnetron discharge. A Langmuir probe was positioned in various positions below the target and the electron density was mapped out. We recorded peak electron densities exceeding 1019 m-3 in a close vicinity of the target. The dynamics of the discharge showed a dense plasma expanding from the "race-track" axially into the vacuum chamber. We also record electrons trapped in a magnetic bottle where the magnetron magnetic field is zero, formed due to the unbalanced magnetron.

    Nyckelord
    magnetron sputtering, plasma density, pulsed plasmas, thin film deposition
    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-13976 (URN)10.1109/TPS.2005.845022 (DOI)
    Tillgänglig från: 2006-09-12 Skapad: 2006-09-12 Senast uppdaterad: 2017-12-13
    4. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge
    Öppna denna publikation i ny flik eller fönster >>The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge
    Visa övriga...
    2006 (Engelska)Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 4, s. 1522-1526Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The energy distribution of sputtered and ionized metal atoms as well as ions from the sputtering gas is reported for a high power impulse magnetron sputtering (HIPIMS) discharge. High power pulses were applied to a conventional planar circular magnetron Ti target. The peak power on the target surface was 1-2 kW/cm2 with a duty factor of about 0.5 %. Time resolved, and time averaged ion energy distributions were recorded with an energy resolving quadrupole mass spectrometer. The ion energy distributions recorded for the HIPIMS discharge are broader with maximum detected energy of 100 eV and contain a larger fraction of highly energetic ions (about 50 % with Ei > 20 eV) as compared to a conventional direct current magnetron sputtering discharge. The composition of the ion flux was also determined, and reveals a high metal fraction. During the most intense moment of the discharge, the ionic flux consisted of approximately 50 % Ti1+, 24 % Ti2+, 23 % Ar1+, and 3 % Ar2+ ions.

    Ort, förlag, år, upplaga, sidor
    Institutionen för fysik, kemi och biologi, 2006
    Nyckelord
    Sputtering, HIPIMS, Mass spectometry, Plasma characterization
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-10448 (URN)10.1016/j.tsf.2006.04.051 (DOI)
    Anmärkning
    Original publication: J. Bohlmark, M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning & U. Helmersson, The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharg, 2006, Thin Solid Films, (515), 4, 1522-1526. http://dx.doi.org/10.1016/j.tsf.2006.04.051. Copyright: Elsevier B.V., http://www.elsevier.com/Tillgänglig från: 2007-12-17 Skapad: 2007-12-17 Senast uppdaterad: 2017-12-14
    5. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel
    Öppna denna publikation i ny flik eller fönster >>Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel
    Visa övriga...
    2006 (Engelska)Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 200, nr 22-23, s. 6495-6499Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    In order to improve the adhesion of hard coatings such as CrN, a surface pretreatment by the novel high power impulse magnetron sputtering (HIPIMS) technique followed by reactive unbalanced d.c. magnetron sputtering deposition was performed using a Cr target. The HIPIMS plasma comprising a high metal ion-to-neutral ratio consisting of single- and double-charged metal species identified by mass spectrometry increased the metal ion flux to the substrate. When applying a negative substrate bias Ub the adhesion was enhanced due to sputter cleaning of the surface and metal ion intermixing in the interface region. This intermixing, resulting in a gradual change of the composition, is considered to enhance the adhesion of the hard coatings on steel substrates. The pretreatment was carried out in an inert gas atmosphere at a pressure of pAr = 1 mTorr, the duration was varied between 25 and 75 min, whereas the negative substrate bias was varied between 400 V and 1200 V. The adhesion was found to depend on the substrate bias as well as on the target power and, for low substrate bias, on the duration of the pretreatment. For CrN the critical load of failure determined by scratch test could be increased in comparison to the values reported for specimens pretreated by conventional Ar etching. The influence of the target peak voltage, the substrate bias as well as pretreatment time on the constitution and morphology of the interface after the pretreatment is discussed applying analytical transmission electron microscopy.

    Nyckelord
    Ionized PVD, Pulsed magnetron sputtering, Analytical TEM, Adhesion, Ion implantation
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-15030 (URN)10.1016/j.surfcoat.2005.11.082 (DOI)
    Anmärkning
    Original publication: M. Lattemann, A.P. Ehiasarian, J. Bohlmark, P.Å.O. Persson and U. Helmersson, Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel, 2006, Surface and Coatings Technology, (200), 22-23, 6495-6499. http://dx.doi.org/10.1016/j.surfcoat.2005.11.082. Copyright: Elsevier B.V., http://www.elsevier.com/ Tillgänglig från: 2008-10-10 Skapad: 2008-10-10 Senast uppdaterad: 2017-12-11
    6. Guiding the deposition flux in an ionized magnetron discharge
    Öppna denna publikation i ny flik eller fönster >>Guiding the deposition flux in an ionized magnetron discharge
    Visa övriga...
    2006 (Engelska)Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 4, s. 1928-1931Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A study of the ability to control the deposition flux in a high power impulse magnetron sputtering discharge using an external magnetic field is presented in this article. Pulses with peak power of 1.4 kWcm-2 were applied to a conventional planar magnetron equipped with an Al target. The high power creates a high degree of ionization of the sputtered material, which opens for an opportunity to control of the energy and direction of the deposition species. An external magnetic field was created with a current carrying coil placed in front of the target. To measure the distribution of deposition material samples were placed in an array surrounding the target and the depositions were made with and without the external magnetic field. The distribution is significantly changed when the magnetic field is present. An increase of 80 % in deposition rate is observed for the sample placed in the central position (right in front of the target center) and the deposition rate is strongly decreased on samples placed to the side of the target. The measurements were also performed on a conventional direct current magnetron discharge, but no major effect of the magnetic field was observed in that case.

    Ort, förlag, år, upplaga, sidor
    Amsterdam, Netherlands: Elsevier, 2006
    Nyckelord
    thin films, sputtering, IPVD, HIPIMS, HPPMS
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-10441 (URN)10.1016/j.tsf.2006.07.183 (DOI)000242931900112 ()
    Anmärkning

    Original publication: J. Bohlmark, M. Östbye, M. Lattemann, H. Ljungcrantz, T. Rosell, and U. Helmersson, Guiding the deposition flux in an ionized magnetron discharge, 2006, Thin Solid Films, (515), 4, 1928-1931. http://dx.doi.org/10.1016/j.tsf.2006.07.183. Copyright: Elsevier B.V., http://www.elsevier.com/

    Tillgänglig från: 2007-12-14 Skapad: 2007-12-14 Senast uppdaterad: 2017-12-14
  • 5.
    Böhlmark, Johan
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    High Power Impulse Magnetron Sputtering; An Overview of History, Properties and Current Status2008Ingår i: 7th Iberian VCacuum Meeting 5th European Topical Conference on Hard Coatings,2008, 2008Konferensbidrag (Övrigt vetenskapligt)
  • 6.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik och mätteknik. Linköpings universitet, Tekniska högskolan.
    The effect of extreme power densities applied to a planar magnetron2004Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    In plasma assisted thin film growth control over the energy and direction of the incoming species is desired. If the growth species are ionized this can be achieved by the use of a substrate bias. ions may be accelerated by an applied potential, whereas neutral particles may not. Thin films grown by ionized physical vapor deposition (I­PVD) have lately shown promising results regarding film structure and adhesion. high power pulsed magnetron sputtering (HPPMS) is a newly developed technique, which relies on the creation of a dense plasma in front of the sputtering target to produce a large fraction of ions of the sputtered material.

    High power pulses of length ~100 µs are applied to a conventional planar magnetron. The highly energetic nature of the discharge, which involves power densities of several kW per cm2 creates a very dense plasma in front of the target. Previous measurements on the plasma properties indicate peak plasma densities in the order of 1019-1020 electrons per m3 and average electron energies of a few eV in a close vicinity to the target. This allows a large fraction of the sputtered material to be ionized.

    This work is focused onto two areas: 1. the ionization fraction of the sputtered material and the ionization process itself and 2. how the highly energetic discharge and the plasma dynamics affects the magnetic environment of the magnetron. Knowledge and control of the process is of interest in thin film growth when relating film properties to process parameters.

    Optical emission spectroscopy (OES) measurements of the plasma indicate that the degree of ionization of sputtered Ti is very high, over 90 % in the peak of the pulse. Even at relatively low applied target power (~200 Wcm-2 peak power) the recorded spectrum is totally dominated by radiation from ions. The distribution of electronically excited states roughly follows a Boltzmann distribution, with a characteristic temperature of 0.6 eV in the case of Ta. This indicates that the distribution of excited states differs significantly from the distribution of ionized states within Ta. We expect a high degree of ionization of the sputtered material, this requires a significant amount of electrons with energies over the ionization potential, which is between 6 and 7 eV for many metals. Sputtered material is ionized close to the target to be transported into a cooler plasma region. The recorded HPPMS spectra were compared to a spectrum taken from a d.c. magnetron discharge, showing a completely different appearance. The dependence on the choice of target material is also discussed, and is assumed to strongly affect the fraction of ions.

    Magnetic measurements performed with a coil type probe show significant deformation in the magnetic field of the magnetrons during the pulse. Spatially resolved measurements show evidence of a dense azimuthally Ex B drifting current. Circulating currents mainly flow within 2 away cm from the target surface in an early part of the pulse, to later diffuse axially into the chamber and decrease in intensity. We record peak current densities of the ExB drift to be in the order of 105 A/m2. Comparisons between Langmuir probe measurements and the magnetic field deformation also indicates that the expanding highly energetic plasma creates diamagnetic and paramagnetic changes of the magnetic field.

  • 7.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Alami, Jones
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Christou, Chris
    Diamond Light Source, Rutherford Appleton Laboratory, Chilton, United Kingdom.
    Ehiasarian, Arutiun P.
    Materials Research Institute, Sheffield Hallam University, United Kingdom.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Ionization of sputtered metals in high power pulsed magnetron sputtering2005Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 23, nr 1, s. 18-22Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ion to neutral ratio of the sputtered material have been studied for high power pulsed magnetron sputtering and compared with a continuous direct current (dc) discharge using the same experimental setup except for the power source. Optical emission spectroscopy (OES) was used to study the optical emission from the plasma through a side window. The emission was shown to be dominated by emission from metal ions. The distribution of metal ionized states clearly differed from the distribution of excited states, and we suggest the presence of a hot dense plasma surrounded by a cooler plasma. Sputtered material was ionized close to the target and transported into a cooler plasma region where the emission was also recorded. Assuming a Maxwell–Boltzmann distribution of excited states the emission from the plasma was quantified. This showed that the ionic contribution to the recorded spectrum was over 90% for high pulse powers. Even at relatively low applied pulse powers, the recorded spectra were dominated by emission from ions. OES analysis of the discharge in a continuous dc magnetron discharge was also made, which demonstrated much lower ionization.

  • 8.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Ehiasarian, A.P.
    Sheffield Hallam University.
    Lattemann, Martina
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Alami, Jones
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Helmersson, Ulf
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    The Ion Energy Distributions in a High Power Impulse Magnetron Plasma2005Ingår i: 48th Annual Technical Conference of the Society of Vacuum Coaters,2005, 2005, s. 470-473Konferensbidrag (Övrigt vetenskapligt)
  • 9.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Gudmundsson, J. T.
    Alami, Jones
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lattemann, Martina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Spatial electron density distribution in a high-power pulsed magnetron discharge2005Ingår i: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 33, nr 2, s. 346-347Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The spatial electron density distribution was measured as function of time in a high-power pulsed magnetron discharge. A Langmuir probe was positioned in various positions below the target and the electron density was mapped out. We recorded peak electron densities exceeding 1019 m-3 in a close vicinity of the target. The dynamics of the discharge showed a dense plasma expanding from the "race-track" axially into the vacuum chamber. We also record electrons trapped in a magnetic bottle where the magnetron magnetic field is zero, formed due to the unbalanced magnetron.

  • 10.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    VanZeeland, Michael
    Large Plasma Device (LAPD), University of California Los Angeles, USA.
    Axnäs, I.
    Division of Plasma Physics, Alfvén Laboratory, Royal Institute of Technology, Stockholm, Sweden.
    Alami, Jones
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Brenning, Nils
    Division of Plasma Physics, Alfvén Laboratory, Royal Institute of Technology, Stockholm, Sweden.
    Measurement of the magnetic field change in a pulsed high current magnetron discharge2004Ingår i: Plasma Sources Science and Technology, ISSN 0963-0252, Vol. 13, nr 4, s. 654-661Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we present a study of how the magnetic field of a circular planar magnetron is affected when it is exposed to a pulsed high current discharge. Spatially resolved magnetic field measurements are presented and the magnetic disturbance is quantified for different process parameters. The magnetic field is severely deformed by the discharge and we record changes of several millitesla, depending on the spatial location of the measurement. The shape of the deformation reveals the presence of azimuthally drifting electrons close to the target surface. Time resolved measurements show a transition between two types of magnetic perturbations. There is an early stage that is in phase with the axial discharge current and a late stage that is not in phase with the discharge current. The later part of the magnetic field deformation is seen as a travelling magnetic wave. We explain the magnetic perturbations by a combination of E × B drifting electrons and currents driven by plasma pressure gradients and the shape of the magnetic field. A plasma pressure wave is also recorded by a single tip Langmuir probe and the velocity (~103 m s−1) of the expanding plasma agrees well with the observed velocity of the magnetic wave. We note that the axial (discharge) current density is much too high compared to the azimuthal current density to be explained by classical collision terms, and an anomalous charge transport mechanism is required.

  • 11.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lattemann, Martina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Gudmundsson, J.T.
    Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland; and Science Institute, University of Iceland, Reykjavik, Iceland.
    Ehiasarian, A.P.
    Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK.
    Aranda Gonzalvo, Y.
    Hiden Analytical Ltd., Warrington, UK.
    Brenning, N.
    Division of Plasma Physics, Alfvén Laboratory, Royal Institute of Technology, Stockholm, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge2006Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 4, s. 1522-1526Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The energy distribution of sputtered and ionized metal atoms as well as ions from the sputtering gas is reported for a high power impulse magnetron sputtering (HIPIMS) discharge. High power pulses were applied to a conventional planar circular magnetron Ti target. The peak power on the target surface was 1-2 kW/cm2 with a duty factor of about 0.5 %. Time resolved, and time averaged ion energy distributions were recorded with an energy resolving quadrupole mass spectrometer. The ion energy distributions recorded for the HIPIMS discharge are broader with maximum detected energy of 100 eV and contain a larger fraction of highly energetic ions (about 50 % with Ei > 20 eV) as compared to a conventional direct current magnetron sputtering discharge. The composition of the ion flux was also determined, and reveals a high metal fraction. During the most intense moment of the discharge, the ionic flux consisted of approximately 50 % Ti1+, 24 % Ti2+, 23 % Ar1+, and 3 % Ar2+ ions.

  • 12.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Lattemann, Martina
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Stranning, H.
    Selinder, T.
    AB Sandvik Tooling.
    Carlsson, J.
    Chemfilt Ionsputtering AB.
    Helmersson, Ulf
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Reactive Film Growth of TiN by Using High Power Impulse Magnetron Sputtering (HIPIMS)2006Ingår i: Society of Vacuum Coaters, 49th Annual Technical Conference Proceedings,2006, 2006, s. 334-337Konferensbidrag (Övrigt vetenskapligt)
  • 13.
    Böhlmark, Johan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Östbye, M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Lattemann, Martina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Ljungcrantz, H.
    Impact Coatings AB, Sweden.
    Rosell, T.
    Impact Coatings AB, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Guiding the deposition flux in an ionized magnetron discharge2006Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 4, s. 1928-1931Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A study of the ability to control the deposition flux in a high power impulse magnetron sputtering discharge using an external magnetic field is presented in this article. Pulses with peak power of 1.4 kWcm-2 were applied to a conventional planar magnetron equipped with an Al target. The high power creates a high degree of ionization of the sputtered material, which opens for an opportunity to control of the energy and direction of the deposition species. An external magnetic field was created with a current carrying coil placed in front of the target. To measure the distribution of deposition material samples were placed in an array surrounding the target and the depositions were made with and without the external magnetic field. The distribution is significantly changed when the magnetic field is present. An increase of 80 % in deposition rate is observed for the sample placed in the central position (right in front of the target center) and the deposition rate is strongly decreased on samples placed to the side of the target. The measurements were also performed on a conventional direct current magnetron discharge, but no major effect of the magnetic field was observed in that case.

  • 14.
    Ehiasarian, A.P.
    et al.
    Sheffield Hallam University.
    Hovsepian, P.Eh.
    Sheffield Hallam University.
    Lattemann, Martina
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Böhlmark, Johan
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Helmersson, Ulf
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    High Power Impulse Magnetron Sputtering (HIPIMS) Pre-treatment for the Deposition of Hard Coatings2005Ingår i: 48th Annual Technical Conference Society of Vacuum Coaters,2005, 2005, s. 480-484Konferensbidrag (Övrigt vetenskapligt)
  • 15.
    Helmersson, Ulf
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Lattemann, Martina
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Alami, Jones
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Böhlmark, Johan
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Ehiasarian, A.P.
    Sheffield Hallam University.
    Gudmundsson, J.T.
    University of Iceland.
    High Power Impulse Magnetron Sputtering Discharges and Thin Film Growth: A Brief Review2005Ingår i: 48th Annual Technical Conference of the Society of Vacuum Coaters,2005, 2005, s. 458-464Konferensbidrag (Övrigt vetenskapligt)
  • 16.
    Helmersson, Ulf
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Lattemann, Martina
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Alami, Jones
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Böhlmark, Johan
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Ehiasarian, A.P.
    Sheffield Hallam University.
    Gudmundsson, J.T.
    University of Iceland.
    Highly Ionized Sputter Discharges for Thin Film Fabrication2006Ingår i: Bulletin of the Russian Academy of Sciences. Physics, ISSN 1062-8738, Vol. 70, nr 8, s. 1421-1424Artikel i tidskrift (Refereegranskat)
  • 17.
    Helmersson, Ulf
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lattemann, Martina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Ehiasarian, Arutiun P.
    Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK.
    Gudmundsson, Jon Tomas
    Department of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland and Science Institute, University of Iceland, Reykjavik, Iceland.
    Ionized physical vapor deposition (IPVD): A review of technology and applications2006Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 513, nr 1-2, s. 1-24Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In plasma-based deposition processing, the importance of low-energy ion bombardment during thin film growth can hardly be exaggerated. Ion bombardment is an important physical tool available to materials scientists in the design of new materials and new structures. Glow discharges and in particular the magnetron sputtering discharge have the advantage that the ions of the discharge are abundantly available to the deposition process. However, the ion chemistry is usually dominated by the ions of the inert sputtering gas while ions of the sputtered material are rare. Over the past few years, various ionized sputtering techniques have appeared that can achieve a high degree of ionization of the sputtered atoms, often up to 50 % but in some cases as much as approximately 90%. This opens a complete new perspective in the engineering and design of new thin film materials. The development and application of magnetron sputtering systems for ionized physical vapor deposition (IPVD) is reviewed. The application of a secondary discharge, inductively coupled plasma magnetron sputtering (ICP-MS) and microwave amplified magnetron sputtering, is discussed as well as the high power impulse magnetron sputtering (HIPIMS), the self-sustained sputtering (SSS) magnetron, and the hollow cathode magnetron (HCM) sputtering discharges. Furthermore, filtered arc-deposition is discussed due to its importance as an IPVD technique. Examples of the importance of the IPVD-techniques for growth of thin films with improved adhesion, improved microstructures, improved coverage of complex shaped substrates, and increased reactivity with higher deposition rate in reactive processes are reviewed.

  • 18.
    Lattemann, Martina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Ehiasarian, A.P.
    Materials Research Institute, Sheffield Hallam University, United Kingdom.
    Böhlmark, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Persson, Per .Å.O.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel2006Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 200, nr 22-23, s. 6495-6499Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to improve the adhesion of hard coatings such as CrN, a surface pretreatment by the novel high power impulse magnetron sputtering (HIPIMS) technique followed by reactive unbalanced d.c. magnetron sputtering deposition was performed using a Cr target. The HIPIMS plasma comprising a high metal ion-to-neutral ratio consisting of single- and double-charged metal species identified by mass spectrometry increased the metal ion flux to the substrate. When applying a negative substrate bias Ub the adhesion was enhanced due to sputter cleaning of the surface and metal ion intermixing in the interface region. This intermixing, resulting in a gradual change of the composition, is considered to enhance the adhesion of the hard coatings on steel substrates. The pretreatment was carried out in an inert gas atmosphere at a pressure of pAr = 1 mTorr, the duration was varied between 25 and 75 min, whereas the negative substrate bias was varied between 400 V and 1200 V. The adhesion was found to depend on the substrate bias as well as on the target power and, for low substrate bias, on the duration of the pretreatment. For CrN the critical load of failure determined by scratch test could be increased in comparison to the values reported for specimens pretreated by conventional Ar etching. The influence of the target peak voltage, the substrate bias as well as pretreatment time on the constitution and morphology of the interface after the pretreatment is discussed applying analytical transmission electron microscopy.

1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf