liu.seSearch for publications in DiVA
Change search
Refine search result
1234 1 - 50 of 154
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Malin
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Jagervall, Karl
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Not Found:Linkoping Univ, Ctr Med Image Sci and Visualizat CMIV, Linkoping, Sweden; Linkoping Univ, Dept Radiol, Linkoping, Sweden; Linkoping Univ, Dept Med and Hlth Sci, Linkoping, Sweden.
    Eriksson, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Heart and Medicine Center, Department of Rheumatology. Linköping University, Faculty of Medicine and Health Sciences.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Granerus, Göran
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Wang, Chunliang
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    How to measure renal artery stenosis - a retrospective comparison of morphological measurement approaches in relation to hemodynamic significance2015In: BMC Medical Imaging, ISSN 1471-2342, E-ISSN 1471-2342, Vol. 15, no 42Article in journal (Refereed)
    Abstract [en]

    Background: Although it is well known that renal artery stenosis may cause renovascular hypertension, it is unclear how the degree of stenosis should best be measured in morphological images. The aim of this study was to determine which morphological measures from Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography (MRA) are best in predicting whether a renal artery stenosis is hemodynamically significant or not. Methods: Forty-seven patients with hypertension and a clinical suspicion of renovascular hypertension were examined with CTA, MRA, captopril-enhanced renography (CER) and captopril test (Ctest). CTA and MRA images of the renal arteries were analyzed by two readers using interactive vessel segmentation software. The measures included minimum diameter, minimum area, diameter reduction and area reduction. In addition, two radiologists visually judged the diameter reduction without automated segmentation. The results were then compared using limits of agreement and intra-class correlation, and correlated with the results from CER combined with Ctest (which were used as standard of reference) using receiver operating characteristics (ROC) analysis. Results: A total of 68 kidneys had all three investigations (CTA, MRA and CER + Ctest), where 11 kidneys (16.2 %) got a positive result on the CER + Ctest. The greatest area under ROC curve (AUROC) was found for the area reduction on MRA, with a value of 0.91 (95 % confidence interval 0.82-0.99), excluding accessory renal arteries. As comparison, the AUROC for the radiologists visual assessments on CTA and MRA were 0.90 (0.82-0.98) and 0.91 (0.83-0.99) respectively. None of the differences were statistically significant. Conclusions: No significant differences were found between the morphological measures in their ability to predict hemodynamically significant stenosis, but a tendency of MRA having higher AUROC than CTA. There was no significant difference between measurements made by the radiologists and measurements made with fuzzy connectedness segmentation. Further studies are required to definitely identify the optimal measurement approach.

  • 2.
    Bergström, G
    et al.
    University of Gothenburg / Sahlgrenska University Hospital.
    Berglund, G
    Lund University.
    Blomberg, A
    Umeå University.
    Brandberg, J
    Sahlgrenska University Hospital / University of Gothenburg.
    Engström, G
    Lund University.
    Engvall, Jan
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Department of Medical and Health Sciences, Division of Drug Research.
    Eriksson, M
    Karolinska University Hospital, Stockholm.
    de Faire, U
    Karolinska Institutet, Stockholm / Karolinska University Hospital, Stockholm.
    Flinck, A
    Sahlgrenska University Hospital, Stockholm / University of Gothenburg.
    Hansson, M G
    Uppsala University.
    Hedblad, B
    Lund University.
    Hjelmgren, O
    University of Gothenburg / Sahlgrenska University Hospital, Gothenburg.
    Janson, C
    Uppsala University.
    Jernberg, T
    Karolinska University Hospital, Stockholm / Karolinska Institutet, Stockholm.
    Johnsson, Å
    Sahlgrenska University Hospital, Gothenburg / University of Gothenburg.
    Johansson, L
    Unit of Radiology.
    Lind, L
    Uppsala University.
    Löfdahl, C-G
    Lund University / Lund University Hospital.
    Melander, O
    Lund University / Skåne University Hospital, Malmö.
    Östgren, Carl Johan
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Primary Health Care in Motala.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Persson, M
    Lund University / Skåne University Hospital, Malmö.
    Sandström, A
    Umeå University.
    Schmidt, C
    University of Gothenburg.
    Söderberg, S
    Umeå University.
    Sundström, J
    Uppsala University / Uppsala Clinical Resarch Centre.
    Toren, K
    University of Gothenburg.
    Waldenström, A
    Umeå University Hospital.
    Wedel, H
    Nordic School of Public Health, Gothenburg.
    Vikgren, J
    Sahlgrenska University Hospital, Gothenburg / University of Gothenburg.
    Fagerberg, B
    University of Gothenburg.
    Rosengren, A
    University of Gothenburg.
    The Swedish CArdioPulmonary BioImage Study: objectives and design2015In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 278, no 6, p. 645-659Article in journal (Refereed)
    Abstract [en]

    Cardiopulmonary diseases are major causes of death worldwide, but currently recommended strategies for diagnosis and prevention may be outdated because of recent changes in risk factor patterns. The Swedish CArdioPulmonarybioImage Study (SCAPIS) combines the use of new imaging technologies, advances in large-scale 'omics' and epidemiological analyses to extensively characterize a Swedish cohort of 30 000 men and women aged between 50 and 64 years. The information obtained will be used to improve risk prediction of cardiopulmonary diseases and optimize the ability to study disease mechanisms. A comprehensive pilot study in 1111 individuals, which was completed in 2012, demonstrated the feasibility and financial and ethical consequences of SCAPIS. Recruitment to the national, multicentre study has recently started.

  • 3.
    Bonzon, Jerome
    et al.
    University of Bern, Switzerland.
    Schoen, Corinna A.
    University of Bern, Switzerland.
    Schwendener, Nicole
    University of Bern, Switzerland.
    Zech, Wolf-Dieter
    University of Bern, Switzerland.
    Kara, Levent
    Triemli Hospital, Switzerland.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jackowski, Christian
    University of Bern, Switzerland.
    Rigor mortis at the myocardium investigated by post-mortem magnetic resonance imaging2015In: Forensic Science International, ISSN 0379-0738, E-ISSN 1872-6283, Vol. 257, p. 93-97Article in journal (Refereed)
    Abstract [en]

    Introduction: Post-mortem cardiac MR exams present with different contraction appearances of the left ventricle in cardiac short axis images. It was hypothesized that the grade of post-mortem contraction may be related to the post-mortem interval (PMI) or cause of death and a phenomenon caused by internal rigor mortis that may give further insights in the circumstances of death. Method and materials: The cardiac contraction grade was investigated in 71 post-mortem cardiac MR exams (mean age at death 52 y, range 12-89 y; 48 males, 23 females). In cardiac short axis images the left ventricular lumen volume as well as the left ventricular myocardial volume were assessed by manual segmentation. The quotient of both (LVQ) represents the grade of myocardial contraction. LVQ was correlated to the PMI, sex, age, cardiac weight, body mass and height, cause of death and pericardial tamponade when present. In cardiac causes of death a separate correlation was investigated for acute myocardial infarction cases and arrhythmic deaths. Results: LVQ values ranged from 1.99 (maximum dilatation) to 42.91 (maximum contraction) with a mean of 15.13. LVQ decreased slightly with increasing PMI, however without significant correlation. Pericardial tamponade positively correlated with higher LVQ values. Variables such as sex, age, body mass and height, cardiac weight and cause of death did not correlate with LVQ values. There was no difference in LVQ values for myocardial infarction without tamponade and arrhythmic deaths. Conclusion: Based on the observation in our investigated cases, the phenomenon of post-mortem myocardial contraction cannot be explained by the influence of the investigated variables, except for pericardial tamponade cases. Further research addressing post-mortem myocardial contraction has to focus on other, less obvious factors, which may influence the early post-mortem phase too. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

  • 4.
    Borga, Magnus
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Virtanen, Kirsi A.
    Turku PET Centre, University of Turku, Finland.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Nuutila, Pirjo
    Turku PET Centre, University of Turku, Finland.
    Enerbäck, Sven
    Department of Biomedicine, University of Gothenburg, Sweden.
    Brown adipose tissue in humans: detection and functional analysis using PET (Positron Emission Tomography), MRI (Magnetic Resonance Imaging), and DECT (Dual Energy Computed Tomography)2014In: Methods in Enzymology: Methods of Adipose Tissue Biology / [ed] Ormond MacDougald, Elsevier, 2014, 1, p. 141-159Chapter in book (Other academic)
    Abstract [en]

    Research with the aim to translate findings of the beneficial effects induced by brown adipose tissue (BAT) on metabolism, as seen in various non-human experimental systems to also include human metabolism requires tools that accurately measure how BAT influences human metabolism. This review sets out to discuss such techniques, how they can be used, what they can measure and also some of their limitations. The focus is on detection and functional analysis of human BAT and how this can be facilitated by applying advanced imaging technology such as:  PET (Positron Emission Tomography), MRI (Magnetic Resonance Imaging), and DECT (Dual Energy Computed Tomography).

  • 5.
    Brismar, T
    et al.
    Department of Radiology, CLINTEC, Stockholm, Sweden.
    Dahlström, Nils
    Linköping University, Department of Medicine and Care. Linköping University, Center for Medical Image Science and Visualization (CMIV). Department of Radiology, Hudiksvall Hospital, Sweden.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Albiin, N
    Department of Radiology, CLINTEC, Stockholm, Sweden.
    Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA- a comparison in healthy volunteers2006In: ISMRM 2006,2006, 2006Conference paper (Other academic)
  • 6.
    Brismar, Torkel
    et al.
    Karolinska Institutet, CLINTEC, Röntgenavdelningen, Karolinska Universitetssjukhuset Huddinge.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Edsborg, Nick
    Karolinska Institutet, CLINTEC, Röntgenavdelningen, Karolinska Universitetssjukhuset Huddinge.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Albiin, Nils
    Karolinska Institutet, CLINTEC, Röntgenavdelningen, Karolinska Universitetssjukhuset Huddinge.
    Liver Vessel Enhancement by Gd-BOPTA and Gc-EOB-DTPA – a Comparison in Healthy Volunteers.2009In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 50, no 7, p. 709-715Article in journal (Refereed)
    Abstract [en]

    Background: A thorough understanding of magnetic resonance (MR) contrast media dynamics makes it possible to choose the optimal contrast media for each investigation. Differences in visualizing hepatobiliary function between Gd-BOPTA and Gd-EOB-DTPA have previously been demonstrated, but less has been published regarding differences in liver vessel visualization.Purpose: To compare the liver vessel and liver parenchymal enhancement dynamics of Gd-BOPTA (MultiHance®) and Gd-EOB-DTPA (Primovist®). Material and Methods: The signal intensity of the liver parenchyma, the common hepatic artery, the middle hepatic vein, and a segmental branch of the right portal vein, was obtained in 10 healthy volunteers before contrast media administration, during arterial and portal venous phases, and 10, 20, 30, 40 and 130 minutes after intravenous contrast medium injection, but due to scanner limitations not during the hepatic venous phase. Results: Maximum enhancement of liver parenchyma was observed from the portal venous phase until 130 minutes after Gd-BOPTA administration and from 10 minutes to 40 minutes after Gd-EOB-DTPA. There was no difference in maximum enhancement of liver parenchyma between the two contrast media. When using Gd-BOPTA, the vascular contrast enhancement was still apparent 40 minutes after injection, but had vanished 10 minutes after Gd-EOB-DTPA injection. The maximum difference in signal intensity between the vessels and the liver parenchyma was significantly greater with Gd-BOPTA than with Gd-EOB-DTPA (p<0.0001). Conclusion: At the dosage used in this study Gd-BOPTA yields higher maximum enhancement of the hepatic artery, portal vein and middle hepatic vein during the arterial and the portal venous phase and during the delayed phases than Gd-EOB-DTPA does, whereas there is no difference in liver parenchymal enhancement between the two contrast agents.

  • 7.
    Coenen, Adriaan
    et al.
    Erasmus Univ, Netherlands.
    Kim, Young-Hak
    Univ Ulsan, South Korea.
    Kruk, Mariusz
    Inst Cardiol, Poland.
    Tesche, Christian
    Med Univ South Carolina, SC 29425 USA.
    de Geer, Jakob
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Kurata, Akira
    Ehime Univ, Japan.
    Lubbers, Marisa L.
    Erasmus Univ, Netherlands.
    Daemen, Joost
    Erasmus Univ, Netherlands.
    Itu, Lucian
    Siemens SRL, Romania.
    Rapaka, Saikiran
    Siemens Healthcare, NJ USA.
    Sharma, Puneet
    Siemens Healthcare, NJ USA.
    Schwemmer, Chris
    Siemens Healthcare GmbH, Germany.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Schoepf, U. Joseph
    Med Univ South Carolina, SC 29425 USA.
    Kepka, Cezary
    Inst Cardiol, Poland.
    Yang, Dong Hyun
    Univ Ulsan, South Korea.
    Nieman, Koen
    Erasmus Univ, Netherlands; Stanford Univ, CA 94305 USA.
    Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium2018In: Circulation Cardiovascular Imaging, ISSN 1941-9651, E-ISSN 1942-0080, Vol. 11, no 6, article id e007217Article in journal (Refereed)
    Abstract [en]

    Background: Coronary computed tomographic angiography (CTA) is a reliable modality to detect coronary artery disease. However, CTA generally overestimates stenosis severity compared with invasive angiography, and angiographic stenosis does not necessarily imply hemodynamic relevance when fractional flow reserve (FFR) is used as reference. CTA-based FFR (CT-FFR), using computational fluid dynamics (CFD), improves the correlation with invasive FFR results but is computationally demanding. More recently, a new machine-learning (ML) CT-FFR algorithm has been developed based on a deep learning model, which can be performed on a regular workstation. In this large multicenter cohort, the diagnostic performance ML-based CT-FFR was compared with CTA and CFD-based CT-FFR for detection of functionally obstructive coronary artery disease. Methods and Results: At 5 centers in Europe, Asia, and the United States, 351 patients, including 525 vessels with invasive FFR comparison, were included. ML-based and CFD-based CT-FFR were performed on the CTA data, and diagnostic performance was evaluated using invasive FFR as reference. Correlation between ML-based and CFD-based CT-FFR was excellent (R=0.997). ML-based (area under curve, 0.84) and CFD-based CT-FFR (0.84) outperformed visual CTA (0.69; Pamp;lt;0.0001). On a per-vessel basis, diagnostic accuracy improved from 58% (95% confidence interval, 54%-63%) by CTA to 78% (75%-82%) by ML-based CT-FFR. The per-patient accuracy improved from 71% (66%-76%) by CTA to 85% (81%-89%) by adding ML-based CT-FFR as 62 of 85 (73%) false-positive CTA results could be correctly reclassified by adding ML-based CT-FFR. Conclusions: On-site CT-FFR based on ML improves the performance of CTA by correctly reclassifying hemodynamically nonsignificant stenosis and performs equally well as CFD-based CT-FFR.

  • 8.
    Dahlström, N
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Brismar, TB
    Persson, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Albiin, N
    Biliary enhancement of Gd-BOPTA and Gd-EOB-DTPA - a study in healthy volunteers2006In: ISMRM,2006, 2006Conference paper (Other academic)
  • 9.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dual-Energy CT Detects Standard-Dose Gd-EOB-DTPA in the Hepatobiliary and Renal Systems of Patients Having Undergone Liver MRI2012Conference paper (Other academic)
  • 10.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Albiin, Nils
    Karolinska Institutet, CLINTEC, Röntgenavdelningen, Karolinska Universitetssjukhuset Huddinge.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Brismar, Torkel
    Karolinska Institutet, CLINTEC, Röntgenavdelningen, Karolinska Universitetssjukhuset Huddinge.
    Contrast-enhanced magnetic resonance cholangiography with Gd-BOPTA and Gd-EOB-DTPA in healthy subjects2007In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 48, no 4, p. 362-368Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To evaluate the biliary enhancement dynamics of the two gadolinium chelates Gd-BOPTA (MultiHance) and Gd-EOB-DTPA (Primovist) in normal healthy subjects. MATERIAL AND METHODS: Ten healthy volunteers were evaluated with both agents by magnetic resonance (MR) imaging at 1.5T using a breath-hold gradient-echo T1-weighted VIBE sequence. The relative signal intensity (SI) differences between the common hepatic duct (CHD) and liver parenchyma were measured before and 10, 20, 30, 40, 130, 240, and 300 min after contrast medium injection. RESULTS: Biliary enhancement was obvious 10 min post-injection for Gd-EOB-DTPA and was noted at 20 min for Gd-BOPTA. At 40 min delay, Gd-BOPTA reached its peak biliary enhancement, but at neither 30 nor 40 min delay was there any significant difference compared with that of Gd-EOB-DTPA. At later delays, the contrast between CHD and liver continued to increase for Gd-EOB-DTPA, whereas it decreased for Gd-BOPTA. CONCLUSION: The earlier onset and longer duration of a high contrast between CHD and liver for Gd-EOB-DTPA facilitates examination of hepatobiliary excretion. Therefore, Gd-EOB-DTPA may provide adequate hepatobiliary imaging within a shorter time span than Gd-BOPTA and facilitate scheduling at the MR unit. Further studies in patients are required to compare the imaging advantages of Gd-EOB-DTPA and Gd-BOPTA in clinical practice.

  • 11.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Kalra, Mannudeep K.
    Massachusetts General Hospital, Boston, USA .
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dual-Energy CT: Uncovering and Troubleshooting New Pitfalls and Artefacts. Educational Exhibit2011Conference paper (Refereed)
  • 12.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Woisetschläger, Mischa
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Singh, S
    Boston, MA/US.
    Digumarthy, M
    Kalra, Mannudeep
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Role of Sinogram Affirmed Iterative Reconstruction(Safire) technique in image quality and radiation dose reduction for chest CT examinations2012Conference paper (Other academic)
  • 13.
    Darras, Kathryn E.
    et al.
    Univ British Columbia, Canada; Maastricht Univ, Netherlands.
    de Bruin, Anique B. H.
    Maastricht Univ, Netherlands.
    Nicolaou, Savvas
    Univ British Columbia, Canada.
    Dahlström, Nils
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    van Merrienboer, Jeroen
    Maastricht Univ, Netherlands.
    Forster, Bruce B.
    Univ British Columbia, Canada.
    Is there a superior simulator for human anatomy education? How virtual dissection can overcome the anatomic and pedagogic limitations of cadaveric dissection2018In: Medical teacher, ISSN 0142-159X, E-ISSN 1466-187X, Vol. 40, no 7, p. 752-753Article in journal (Refereed)
    Abstract [en]

    Educators must select the best tools to teach anatomy to future physicians and traditionally, cadavers have always been considered the "gold standard" simulator for living anatomy. However, new advances in technology and radiology have created new teaching tools, such as virtual dissection, which provide students with new learning opportunities. Virtual dissection is a novel way of studying human anatomy through patient computed tomography (CT) scans. Through touchscreen technology, students can work together in groups to "virtually dissect" the CT scans to better understand complex anatomic relationships. This article presents the anatomic and pedagogic limitations of cadaveric dissection and explains what virtual dissection is and how this new technology may be used to overcome these limitations.

  • 14.
    De Geer, Jakob
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Gjerde, Marcus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Brudin, Lars
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Department of Clinical Physiology in Kalmar, Linköping University, County Council of Kalmar, Kalmar, Sweden.
    Olsson, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Large variation in blood flow between left ventricular segments, as detected by adenosine stress dynamic CT perfusion.2015In: Clinical Physiology and Functional Imaging, ISSN 1475-0961, E-ISSN 1475-097X, Vol. 35, no 4, p. 291-300Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Dynamic cardiac CT perfusion (CTP) is based on repeated imaging during the first-pass contrast agent inflow. It is a relatively new method that still needs validation.

    PURPOSE: To evaluate the variation in adenosine stress dynamic CTP blood flow as compared to (99m) Tc SPECT. Secondarily, to compare manual and automatic segmentation.

    METHODS: Seventeen patients with manifest coronary artery disease were included. Nine were excluded from evaluation for various reasons. All patients were examined with dynamic stress CTP and stress/rest SPECT. CTP blood flow was compared with SPECT on a per segment basis. Results for manual and automated AHA segmentation were compared.

    RESULTS: CTP showed a positive correlation with SPECT, with correlation coefficients of 0·38 and 0·41 for manual and automatic segmentation, respectively (P<0·0001). There was no significant difference between the correlation coefficients of the manual and automated segmentation procedures (P = 0·75). The average per individual global CTP blood flow value for normal segments varied by a factor of 1·9 (manual and automatic segmentation). For the whole patient group, the CTP blood flow value in normal segments varied by a factor of 2·9/2·7 (manual/automatic segmentation). Within each patient, the average per segment blood flow in normal segments varied by a factor of 1·3-2·0/1·2-2·1 (manual/automatic segmentation).

    CONCLUSION: A positive but rather weak correlation was found between CTP and (99m) Tc SPECT. Large variations in CTP blood flow suggest that a cut-off value for stress myocardial blood flow is inadequate to detect ischaemic segments. Dynamic CTP is hampered by a limited coverage.

  • 15.
    De Geer, Jakob
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Post processing noise reduction as a way of reducing the dose in cardiac CT without sacrificing image quality: A Pilot study.2010In: European Congress of Radiology 2010, 2010Conference paper (Refereed)
  • 16.
    de Geer, Jakob
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    The efficacy of 2D, non-linear noise reduction filtering in cardiac imaging: a pilot study2011In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 52, no 7, p. 716-722Article in journal (Refereed)
    Abstract [en]

    Background: Computed tomography (CT) is becoming increasingly popular as a non-invasive method for visualizing the coronary arteries but patient radiation doses are still an issue. Postprocessing filters such as 2D adaptive non-linear filters might help to reduce the dose without loss of image quality. less thanbrgreater than less thanbrgreater thanPurpose: To investigate whether the use of a 2D, non-linear adaptive noise reduction filter can improve image quality in cardiac computed tomography angiography (CCTA). less thanbrgreater than less thanbrgreater thanMaterial and Methods: CCTA examinations were performed in 36 clinical patients on a dual source CT using two patient dose levels: maximum dose during diastole and reduced dose (20% of maximum dose) during systole. One full-dose and one reduced-dose image were selected from each of the examinations. The reduced-dose image was duplicated and one copy postprocessed using a 2D non-linear adaptive noise reduction filter, resulting in three images per patient. Image quality was assessed using visual grading with three criteria from the European guidelines for assessment of image quality and two additional criteria regarding the left main artery and the overall image quality. Also, the HU value and its standard deviation were measured in the ascending and descending aorta. Data were analyzed using Visual Grading Regression and paired t-test. less thanbrgreater than less thanbrgreater thanResult: For all five criteria, there was a significant (P andlt; 0.01 or better) improvement in perceived image quality when comparing postprocessed low-dose images with low-dose images without noise reduction. Comparing full dose images with postprocessed low-dose images resulted in a considerably larger, significant (P andlt; 0.001) difference. Also, there was a significant reduction of the standard deviation of the HU values in the ascending and descending aorta when comparing postprocessed low-dose images with low-dose images without postprocessing. less thanbrgreater than less thanbrgreater thanConclusion: Even with an 80% dose reduction, there was a significant improvement in the perceived image quality when using a 2D noise-reduction filter, though not approaching the quality of full-dose images. This indicates that cardiac CT examinations could benefit from noise-reducing postprocessing with 2D non-linear adaptive filters.

  • 17.
    De Geer, Jakob
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Sandstedt, Mårten
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Björkholm, Anders
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Alfredsson, Joakim
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Janzon, Magnus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Software-based on-site estimation of fractional flow reserve using standard coronary CT angiography data.2016In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 57, no 10, p. 1186-1192Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The significance of a coronary stenosis can be determined by measuring the fractional flow reserve (FFR) during invasive coronary angiography. Recently, methods have been developed which claim to be able to estimate FFR using image data from standard coronary computed tomography angiography (CCTA) exams.

    PURPOSE: To evaluate the accuracy of non-invasively computed fractional flow reserve (cFFR) from CCTA.

    MATERIAL AND METHODS: A total of 23 vessels in 21 patients who had undergone both CCTA and invasive angiography with FFR measurement were evaluated using a cFFR software prototype. The cFFR results were compared to the invasively obtained FFR values. Correlation was calculated using Spearman's rank correlation, and agreement using intraclass correlation coefficient (ICC). Sensitivity, specificity, accuracy, negative predictive value, and positive predictive value for significant stenosis (defined as both FFR ≤0.80 and FFR ≤0.75) were calculated.

    RESULTS: The mean cFFR value for the whole group was 0.81 and the corresponding mean invFFR value was 0.84. The cFFR sensitivity for significant stenosis (FFR ≤0.80/0.75) on a per-lesion basis was 0.83/0.80, specificity was 0.76/0.89, and accuracy 0.78/0.87. The positive predictive value was 0.56/0.67 and the negative predictive value was 0.93/0.94. The Spearman rank correlation coefficient was ρ = 0.77 (P < 0.001) and ICC = 0.73 (P < 0.001).

    CONCLUSION: This particular CCTA-based cFFR software prototype allows for a rapid, non-invasive on-site evaluation of cFFR. The results are encouraging and cFFR may in the future be of help in the triage to invasive coronary angiography.

  • 18.
    Engellau, Lena
    et al.
    Department of Radiology, Lund University Hospital, Lund, Sweden.
    Albrechtsson, U.
    Department of Radiology, Lund University Hospital, Lund, Sweden.
    Dahlström, Nils
    Department of Radiology, Hudiksvall Hospital, Hudiksvall Sweden.
    Norgren, L.
    Department of Vascular Diseases, Lund University, Malmo University Hospital, Malmo, Sweden.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Larsson, E.-M.
    Department of Radiology, Lund University Hospital, Lund, Sweden.
    Measurements before endovascular repair of abdominal aortic aneurysms: MR imaging with MRA vs. angiography and CT2003In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 44, no 2, p. 177-184Article in journal (Refereed)
    Abstract [en]

    Purpose: 1) To compare measurements obtained with MR imaging (MRI)/contrast-enhanced MR angiography (CE MRA) with measurements obtained with angiography (DSA) and CT, for stent-graft sizing of abdominal aortic aneurysms (AAA). 2) To compare MRA measurements obtained with the two post processing techniques MIP (maximum intensity projection) and VRT (3D volume rendering technique).

    Material and Methods: The prospective study included 20 consecutive patients with AAA identified by DSA and CT as suitable for endovascular repair. For the study, MRI/CE MRA was performed. Five measurement variables for stent-graft sizing were chosen. Comparisons were made between MRI/CE MRA, DSA and CT, and between observers. Comparisons were also made between MIP and VRT.

    Results: Significantly shorter lengths were obtained with MRA-MIP than with DSA. Three out of six diameter measurements were significantly smaller on MRI/CE MRA than on DSA and CT. No significant differences were found between the observers. One diameter measurement was significantly smaller on MIP than on VRT, while the other measurements showed no significant differences.

    Conclusion: The length measurements obtained with MRA-MIP were probably more correct than those with DSA. For more reliable diameter measurements with CE MRA, improvements of the technique, including VRT reconstructions and a standardized determination of the vessel boundaries, are needed.

  • 19.
    Engström, Elias
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Persson, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Berge, J
    Engvall, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Clinical Physiology . Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Wigström, Lars
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Clinical Physiology . Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Zachrisson, Helene
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Clinical Physiology . Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Dual-energy CT of ex-vivo tissue samples.2008In: Cardiovaskulära vårmötet,2008, 2008Conference paper (Refereed)
  • 20.
    Eriksson, Anders
    et al.
    Umeå University, Sweden.
    Gustafsson, Torfinn
    Umeå University, Sweden.
    Hoistad, Malin
    Swedish Agency Health Technology Assessment and Assessment, Sweden; Karolinska Institute, Sweden.
    Hultcrantz, Monica
    Swedish Agency Health Technology Assessment and Assessment, Sweden; Karolinska Institute, Sweden.
    Jacobson, Stella
    Swedish Agency Health Technology Assessment and Assessment, Sweden.
    Mejare, Ingegerd
    Swedish Agency Health Technology Assessment and Assessment, Sweden.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Diagnostic accuracy of postmortem imaging vs autopsy-A systematic review2017In: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 89, p. 249-269Article, review/survey (Refereed)
    Abstract [en]

    Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity - in populations, techniques, analyses and reporting - of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem imaging and its usefulness in conjunction with, or as an alternative to autopsy. To correctly determine the usefulness of postmortem imaging, future studies need improved planning, improved methodological quality and larger materials, preferentially obtained from multi-center studies. (C) 2016 Published by Elsevier Ireland Ltd.

  • 21.
    Eriksson, Per
    et al.
    Linköping University, Department of Medicine and Health Sciences, Internal Medicine . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Nephrology UHL.
    Mohammed, Ahmed Abdulilah
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    De Geer, Jakob
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Granerus, Göran
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Clinical Physiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Nyström, Fredrik
    Linköping University, Department of Medicine and Health Sciences, Internal Medicine . Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Non-invasive investigations of potential renal artery stenosis in renal insufficiency2010In: Nephrology, Dialysis and Transplantation, ISSN 0931-0509, E-ISSN 1460-2385, Vol. 25, no 11, p. 3607-3614Article in journal (Refereed)
    Abstract [en]

    Background. The diagnostic value of non-invasive methods for diagnosing renal artery stenosis in patients with renal insufficiency is incompletely known.

    Methods. Forty-seven consecutive patients with moderately impaired renal function and a clinical suspicion of renal artery stenosis were investigated with computed tomography angiography (CTA), gadolinium-enhanced magnetic resonance angiography (MRA), contrast-enhanced Doppler ultrasound and captopril renography. The primary reference standard was stenosis reducing the vessel diameter by at least 50% on CTA, and an alternative reference standard (‘morphological and functional stenosis’) was defined as at least 50% diameter reduction on CTA or MRA, combined with a positive finding from ultrasound or captopril renography.

    Results. The frequency of positive findings, calculated on the basis of individual patients, was 70% for CTA, 60% for MRA, 53% for ultrasound and 30% for captopril renography. Counting kidneys rather than patients, corresponding frequencies were 53%, 41%, 29% and 15%, respectively. In relation to the CTA standard, the sensitivity (and specificity) at the patient level was 0.81 (0.79) for MRA, 0.70 (0.89) for ultrasound and 0.42 (1.00) for captopril renography, and at the kidney level 0.76 (0.82), 0.53 (0.81) and 0.30 (0.86), respectively. Relative to the alternative reference standard, corresponding values at the patient level were 1.00 (0.62) for CTA, 0.90 (0.69) for MRA, 0.91 (1.00) for ultrasound and 0.67 (1.00) for captopril renography, and at the kidney level 0.96 (0.76), 0.85 (0.79), 0.71 (0.97) and 0.50 (0.97), respectively.

    Conclusions. CTA and MRA are superior to ultrasound and captopril renography at diagnosing morphological stenosis, but ultrasound may be useful as a screening method and captopril renography for verifying renin-dependent hypertension.

  • 22.
    Gimm, Oliver
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Juhlin, Claes
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Morales, Olallo
    Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Dual-Energy Computed Tomography Localizes Ectopic Parathyroid Adenoma2010In: The Journal of Clinical Endocrinology & Metabolism, ISSN 0021-972X, Vol. 95, no 7, p. 3092-3093Article in journal (Refereed)
    Abstract [en]

    Dual-energy computed tomography (DECT) can acquire two datasets showing different attenuation levels allowing collectionof additional information about the elementary chemical compositionof the scanned material. Color can then be assigned accordingto the 80- and 140-kV computed tomography (CT) values to obtaina color-mapped, dual-energy image. DECT has been used extensivelyin our department in postmortem CT with excellent results (1).One of the advantages of DECT is that iodine contrast uptakein soft tissue can be quantified. We were wondering about itsability to localize parathyroid adenomas (PAs).

  • 23.
    Gupta, Vikas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lantz, Jonas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Henriksson, Lilian
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Automated three-dimensional tracking of the left ventricular myocardium in time-resolved and dose-modulated cardiac CT images using deformable image registration2018In: Journal of Cardiovascular Computed Tomography, ISSN 1934-5925, Vol. 12, no 2, p. 139-148Article in journal (Refereed)
    Abstract [en]

    Background Assessment of myocardial deformation from time-resolved cardiac computed tomography (4D CT) would augment the already available functional information from such an examination without incurring any additional costs. A deformable image registration (DIR) based approach is proposed to allow fast and automatic myocardial tracking in clinical 4D CT images.

    Methods Left ventricular myocardial tissue displacement through a cardiac cycle was tracked using a B-spline transformation based DIR. Gradient of such displacements allowed Lagrangian strain estimation with respect to end-diastole in clinical 4D CT data from ten subjects with suspected coronary artery disease. Dice similarity coefficient (DSC), point-to-curve error (PTC), and tracking error were used to assess the tracking accuracy. Wilcoxon signed rank test provided significance of tracking errors. Topology preservation was verified using Jacobian of the deformation. Reliability of estimated strains and torsion (normalized twist angle) was tested in subjects with normal function by comparing them with normal strain in the literature.

    Results Comparison with manual tracking showed high accuracy (DSC: 0.99± 0.05; PTC: 0.56mm± 0.47 mm) and resulted in determinant(Jacobian) > 0 for all subjects, indicating preservation of topology. Average radial (0.13 mm), angular (0.64) and longitudinal (0.10 mm) tracking errors for the entire cohort were not significant (p > 0.9). For patients with normal function, average strain [circumferential, radial, longitudinal] and peak torsion estimates were: [-23.5%, 31.1%, −17.2%] and 7.22°, respectively. These estimates were in conformity with the reported normal ranges in the existing literature.

    Conclusions Accurate wall deformation tracking and subsequent strain estimation are feasible with the proposed method using only routine time-resolved 3D cardiac CT.

    The full text will be freely available from 2019-03-22 00:01
  • 24.
    Höök, Fredrik
    et al.
    Chalmers tekniska högskola, Sweden .
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Kasemo, Bengt
    Chalmers tekniska högskola, Sweden.
    Nanopartiklar kan förbättra avbildningsteknik och diagnostik2017In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 114Article, review/survey (Refereed)
    Abstract [en]

    Nanotechnology can improve diagnostics The unique properties of nanoparticles make them tailorable into diagnostic agents on a molecular level, which allow more sensitive and precise in vitro diagnostics and in vivo imaging. While in vitro applications already have impact on diagnostics, in vivo use remains challenging due to difficulties in preparing nanoparticles with acceptable properties regarding toxicity, specific target accumulation and degradation. This article describes the innovative work of developing such platforms, and concludes that while nanotechnology-based diagnostics and imaging are still scarce at the clinical level, the rapid development of many new concepts, devices and processes that are now in the laboratory pipeline promises significant impact in the near future.

  • 25.
    Jackowski, Christian
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Letter: Comments on the paper entitled "Is post-mortem CT of the dentition adequate for correct forensic identification? comparison of dental computed tomograpy and visual dental record" by S. Kirchhoff et al.2010In: International journal of legal medicine (Print), ISSN 0937-9827, E-ISSN 1437-1596, Vol. 124, no 3, p. 259-259Article in journal (Other academic)
    Abstract [en]

    n/a

  • 26.
    Jackowski, Christian
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Center for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Bern, Switzerland.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology.
    Thali, Michael J.
    Center for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Bern, Switzerland.
    Whole body postmortem angiography with a high viscosity contrast agent solution using poly ethylene glycol as contrast agent dissolver2008In: Journal of Forensic Sciences, ISSN 0022-1198, E-ISSN 1556-4029, Vol. 53, no 2, p. 465-468Article in journal (Refereed)
    Abstract [en]

    Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced. © 2008 American Academy of Forensic Sciences.

  • 27.
    Jackowski, Christian
    et al.
    University of Bern, Switzerland .
    Schwendener, Nicole
    University of Bern, Switzerland .
    Grabherr, Silke
    University of Lausanne, Switzerland .
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Post-Mortem Cardiac 3-T Magnetic Resonance Imaging Visualization of Sudden Cardiac Death?2013In: Journal of the American College of Cardiology, ISSN 0735-1097, E-ISSN 1558-3597, Vol. 62, no 7, p. 617-629Article in journal (Refereed)
    Abstract [en]

    Objectives This study aimed to investigate post-mortem magnetic resonance imaging (pmMRI) for the assessment of myocardial infarction and hypointensities on post-mortem T-2-weighted images as a possible method for visualizing the myocardial origin of arrhythmic sudden cardiac death. less thanbrgreater than less thanbrgreater thanBackground Sudden cardiac death has challenged clinical and forensic pathologists for decades because verification on post-mortem autopsy is not possible. pmMRI as an autopsy-supporting examination technique has been shown to visualize different stages of myocardial infarction. less thanbrgreater than less thanbrgreater thanMethods In 136 human forensic corpses, a post-mortem cardiac MR examination was carried out prior to forensic autopsy. Short-axis and horizontal long-axis images were acquired in situ on a 3-T system. less thanbrgreater than less thanbrgreater thanResults In 76 cases, myocardial findings could be documented and correlated to the autopsy findings. Within these 76 study cases, a total of 124 myocardial lesions were detected on pmMRI (chronic: 25; subacute: 16; acute: 30; and peracute: 53). Chronic, subacute, and acute infarction cases correlated excellently to the myocardial findings on autopsy. Peracute infarctions (age range: minutes to approximately 1 h) were not visible on macroscopic autopsy or histological examination. Peracute infarction areas detected on pmMRI could be verified in targeted histological investigations in 62.3% of cases and could be related to a matching coronary finding in 84.9%. A total of 15.1% of peracute lesions on pmMRI lacked a matching coronary finding but presented with severe myocardial hypertrophy or cocaine intoxication facilitating a cardiac death without verifiable coronary stenosis. less thanbrgreater than less thanbrgreater thanConclusions 3-T pmMRI visualizes chronic, subacute, and acute myocardial infarction in situ. In peracute infarction as a possible cause of sudden cardiac death, it demonstrates affected myocardial areas not visible on autopsy. pmMRI should be considered as a feasible post-mortem investigation technique for the deceased patient if no consent for a clinical autopsy is obtained.

  • 28.
    Jackowski, Christian
    et al.
    Universität Zürich, Inst für Rechtsmedizin, Winterthurerstrasse 190/52, CH-8057 Zürich, Switzerland.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences.
    Berge, Johan
    Rättsmedicinalverket, Rättsmedicinska avdelningen, Artillerigatan 12, 587 58 Linköping.
    Bär, Walter
    Universität Zürich, Inst für Rechtsmedizin, Winterthurerstrasse 190/52, CH-8057 Zürich, Switzerland.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI2011In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. Jan;21, no 1, p. 70-78Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses.

    MATERIALS AND METHODS: Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses.

    RESULTS: Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration.

    CONCLUSION: pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy.

  • 29.
    Jackowski, Christian
    et al.
    Universität Zürich, Inst für Rechtsmedizin, Winterthurerstrasse 190/52, CH-8057 Zürich, Switzerland.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Berge, Johan
    Rättsmedicinalverket, Rättsmedicinska avdelningen, Artillerigatan 12, 587 58 Linköping.
    Thali, Michael J.
    Univ Bern, Inst Forensic Medicine, Ctr Forens Imaging & Virtopsy, CH-3012 Bern, Switzerland.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Quantitative MRI in Isotropic Spatial Resolution for Forensic Soft Tissue Documentation. Why and How?2011In: Journal of Forensic Sciences, ISSN 0022-1198, E-ISSN 1556-4029, Vol. 56, no 1, p. 208-215Article in journal (Refereed)
    Abstract [en]

    A quantification of T1, T2, and PD in high isotropic resolution was performed on corpses. Isotropic and quantified postmortem magnetic resonance (IQpmMR) enables sophisticated 3D postprocessing, such as reformatting and volume rendering. The body tissues can be characterized by the combination of these three values. The values of T1, T2, and PD were given as coordinates in a T1-T2-PD space where similar tissue voxels formed clusters. Implementing in a volume rendering software enabled color encoding of specific tissues and pathologies in 3D models of the corpse similar to computed tomography, but with distinctively more powerful soft tissue discrimination. From IQpmMR data, any image plane at any contrast weighting may be calculated or 3D color-encoded volume rendering may be carried out. The introduced approach will enable future computer-aided diagnosis that, e.g., checks corpses for a hemorrhage distribution based on the knowledge of its T1-T2-PD vector behavior in a high spatial resolution.

  • 30.
    Kalra, Mannudeep K.
    et al.
    Massachusetts General Hospital, Boston, USA .
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Digumarthy, Subba Rao
    Massachusetts General Hospital, Boston, USA .
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Singh, Sarabjeet
    Massachusetts General Hospital, Boston, USA .
    Can image space iterative reconstruction technique allow 60% dose reduction for thoracic CT? Results for a randomised prospective pilot study2010In: SSQ03-06, 2010Conference paper (Other academic)
  • 31.
    Kalra, Mannudeep K.
    et al.
    Massachusetts General Hospital, Boston, USA .
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Combining high pitch, low kV and 4D automatic exposure controll technique for reducing CT radiation dose for mapping of pulmonary venous anatomy2010In: SSJ05-05, 2010Conference paper (Other academic)
  • 32.
    Kalra, Mannudeep K.
    et al.
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Woisetschläger, Mischa
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlström, Nils
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Sing, Sarabjeet
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Lindblom, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Choy, Garry
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Schmidt, Bernhard
    Siemens Healthcare, Forchheim, Germany.
    Sedlmair, Martin
    Siemens Healthcare, Forchheim, Germany.
    Blake, Michail A.
    Radiology, Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Radiation Dose Reduction with Sinogram Affirmed Iterative Reconstruction Technique for abdominal Computer Tomography2012In: Journal of Computer Assisted Tomography, ISSN 0363-8715, Vol. 36, no 3, p. 339-346Article in journal (Refereed)
    Abstract [en]

    Purpose: The objective of this study was to assess the effect of Sinogram Affirmed Iterative Reconstruction (SAFIRE) and filtered back-projection (FBP) techniques on abdominal computed tomography (CT) performed with 50% and 75% radiation dose reductions.

    Methods: Twenty-four patients (mean age, 64 ± 14 years; male-female ratio, 10:14) gave informed consent for an institutional review board–approved prospective study involving acquisition of additional research images through the abdomen on 128-slice multi–detector-row CT (SOMATOM Definition Flash) at quality reference mAs of 100 (50% lower dose) and 50 (75% lower dose) over a scan length of 10 cm using combined modulation (CARE Dose 4D). Standard-of-care abdominal CT was performed at 200 quality reference mAs, with remaining parameters held constant. The 50- and 100-mAs data sets were reconstructed with FBP and at 4 SAFIRE settings (S1, S2, S3, S4). Higher number of SAFIRE settings denotes increased strength of the algorithm resulting in lower image noise. Two abdominal radiologists independently compared the FBP and SAFIRE images for lesion number, location, size and conspicuity, and visibility of small structures, image noise, and diagnostic confidence. Objective noise and Hounsfield units (HU) were measured in the liver and the descending aorta.

    Results: All 43 lesions were detected on both FBP and SAFIRE images. Minor blocky, pixelated appearance of 50% and 75% reduced dose images was noted at S3 and S4 SAFIRE but not at S1 and S2 settings. Subjective noise was suboptimal in both 50% and 75% lower-dose FBP images but was deemed acceptable on all SAFIRE settings. Sinogram Affirmed Iterative Reconstruction images were deemed acceptable in all patients at 50% lower dose and in 22 of 24 patients at 75% lower dose. As compared with 75% reduced dose FBP, objective noise was lower by 22.8% (22.9/29.7), 35% (19.3/29.7), 44.3% (16.7/29.3), and 54.8% (13.4/29.7) on S1 to S4 settings, respectively (P < 0.001).

    Conclusions: Sinogram Affirmed Iterative Reconstruction–enabled reconstruction provides abdominal CT images without loss in diagnostic value at 50% reduced dose and in some patients also at 75% reduced dose.

  • 33.
    Kalra, Mannudeep K.
    et al.
    Division of Thoraic Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Woisetschläger, Mischa
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Singh, Sarabjeet
    Massachusetts General Hospital, Boston, USA .
    Digumarthy, Subbarao
    Massachusetts General Hospital, Boston, USA .
    Do, Synho
    Massachusetts General Hospital, Boston, USA .
    Pien, Homer
    Massachusetts General Hospital, Boston, USA .
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Schmidt, Bernhard
    Siemens Healthcare, Forchheim, Germany..
    Sedlmair, Martin
    Siemens Healthcare, Forchheim, Germany.
    Shepard, Jo-Anne O.
    Massachusetts General Hospital, Boston, USA .
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Sinogram-Affirmed Iterative Reconstruction of Low-Dose Chest CT: Effect on Image Quality and Radiation Dose2013In: American Journal of Roentgenology, ISSN 0361-803X, E-ISSN 1546-3141, Vol. 201, no 2, p. W235-W244Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE. The purpose of this study is to compare sinogram-affirmed iterative reconstruction (SAFIRE) and filtered back projection (FBP) reconstruction of chest CT acquired with 65% radiation dose reduction.

    SUBJECTS AND METHODS. In this prospective study involving 24 patients (11 women and 13 men; mean [+/- SD] age, 66 +/- 10 years), two scan series were acquired using 100 and 40 Quality Reference mAs over a 10-cm scan length in the chest with a 128-MDCT scanner. The 40 Quality Reference mAs CT projection data were reconstructed with FBP and four settings of Safire (S1, S2, S3, and S4). Six image datasets (FBP with 100 and 40 Quality Reference mAs, and S1, S2, S3, S4 with 40 Quality Reference mAs) were displayed on a DICOM-compliant 55-inch 2-megapixel monitor for blinded evaluation by two thoracic radiologists for number and location of lesions, lesion size, lesion margins, visibility of small structures and fissures, and diagnostic confidence. Objective noise and CT values were measured in thoracic aorta for each image series, and the noise power spectrum was assessed. Data were analyzed with analysis of variance and Wilcoxon signed rank tests.

    RESULTS. All 186 lesions were seen on 40 Quality Reference mAs SAFIRE images. Diagnostic confidence on SAFIRE images was higher than that for FBP images. Except for the minor blotchy appearance on SAFIRE settings S3 and S4, no significant artifacts were noted. Objective noise with 40 Quality Reference mAs S1 images (21.1 +/- 6.1 SD of HU) was significantly lower than that for 40 Quality Reference mAs FBP images (28.5 +/- 8.1 SD of HU) (p andlt; 0.001). Noise power spectra were identical for SAFIRE and FBP with progressive noise reduction with higher iteration SAFIRE settings.

    CONCLUSION. Iterative reconstruction (SAFIRE) allows reducing the radiation exposure by approximately 65% without losing diagnostic information in chest CT.

  • 34.
    Kalra, Mannudeep
    et al.
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Is high speed and high pitch dual source CT scanning with no ECG gating and no breath hold adequate for mapping pulmonary venous anatomy?2010In: In proceedings of RSNA Chicago, 2010, 2010Conference paper (Refereed)
  • 35.
    Kalra, Mannudeep
    et al.
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Digumarthy, Subba Rao
    Pien, Homer H.
    Singh, Sarabjeet
    Iterative Reconstruction Techniques: The Be-All and End-All for CT Dose Reduction? Pictorial Synopsis of Different Vendor Techniques2010In: In Proceedings of RSNA 2010, LL-PHE 4076, 2010Conference paper (Refereed)
    Abstract [en]

    Recently introduced IRT for clinical use allow dose reduction for adult and pediatric CT while maintaining or even enhancing image quality compared to filtered back projection based reconstruction. Specific adjustments of scanning protocols and fine-tuning of iterative settings are necessary to ensure optimum usage with understanding of its potential and disadvantages. This educational exhibit focuses on clinical illustrations to simplify application of IRT for reducing CT radiation dose

  • 36.
    Kalra, Mannudeep
    et al.
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Combining low kVp, lowest tube current, high pitch and fast table speed for minimizing radiation dose for whole body CT imaging of children with scoliosis2010In: SSK14-08, 2010Conference paper (Other academic)
  • 37.
    Kalra, Mannudeep
    et al.
    Massachusetts General Hospital, Boston, MA, USA .
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Singh, Sarabjeet
    Massachusetts General Hospital, Boston, MA, USA .
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Whole spine CT for evaluation of scoliosis in children: feasibility of sub-milliSievert scanning protocol2013In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 54, no 2, p. 226-230Article in journal (Refereed)
    Abstract [en]

    Background Optimization of CT radiation dose is important for children due to their higher risk of radiation-induced adverse effects. Anatomical structures with high inherent contrast, such as bones can be imaged at very low radiation doses by optimizing scan parameters.                    

    Purpose To assess feasibility of sub-milliSievert whole spine CT scanning protocol for evaluation of scoliosis in children.                    

    Material and Methods With approval of the ethical board, we performed whole spine CT for evaluation of scoliosis in 22 children (age range, 3–18 years; mean age, 13 years; 13 girls, 9 boys) on a 128-slice dual source multidetector-row CT scanner. Lowest possible quality reference mAs value (image quality factor for xy-z automatic exposure control or xyz-AEC, CARE Dose 4D) was selected on a per patient basis. Remaining parameters were held constant at 3.0:1 pitch, 128 × 0.6 mm detector collimation, 115.2 mm table feed per gantry rotation, 100 kVp, and 1 and 3 mm reconstructed sections. Average mAs, projected estimated dose savings with AEC, computed tomography dose index volume (CTDI vol), and dose length product (DLP) were recorded. Artifacts were graded on a four-point scale (1, no artifacts; 4, severe artifacts). Ability to identify vertebral and pedicular contours, and measure pedicular width and degree of vertebral rotation was graded on a three-point scale (1, unacceptable; 3, excellent).       

    Results All CT examinations were deemed as reliable for identifying vertebral and pedicular contours as well as for measuring pedicular width (5.9 ± 1.6 mm) and degree of vertebral rotation (28.7 ± 23.4°). Mean objective image noise and signal to noise ratio (SNR) were 57.5 ± 21.5 and 4.7 ± 2.3, respectively. With a mean quality reference mAs of 13, the scanner employed an average actual effective mAs of 10 ± 3.8 (range, 6–18 mAs) with an estimated radiation dose saving of 43.5 ± 16.3% with xyz-AEC compared with fixed mAs. The mean CTDI, DLP, and estimated effective doses were 0.4 ± 0.1 mGy (0.2–0.7 mGy), 21 ± 10 mGy.cm (8–41 mGy.cm), and 0.3 ± 0.1 mSv (0.12–0.64 mSv), respectively.                    

    Conclusion Radiation dose for whole spine CT for evaluation of scoliosis in children can be minimized to less than one-third of a milliSievert while maintaining diagnostic image quality.

  • 38.
    Kataria, Bharti
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson Althen, Jonas
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. KTH Royal Institute of Technology.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Sökjer, Hannibal
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Assessment of image quality in abdominal CT: potential dose reduction with model-based iterative reconstruction2018In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084Article in journal (Refereed)
    Abstract [en]

    Purpose To estimate potential dose reduction in abdominal CT by visually comparing images reconstructed with filtered back projection (FBP) and strengths of 3 and 5 of a specific MBIR.

    Material and methods A dual-source scanner was used to obtain three data sets each for 50 recruited patients with 30, 70 and 100% tube loads (mean CTDIvol 1.9, 3.4 and 6.2 mGy). Six image criteria were assessed independently by five radiologists. Potential dose reduction was estimated with Visual Grading Regression (VGR).

    Results Comparing 30 and 70% tube load, improved image quality was observed as a significant strong effect of log tube load and reconstruction method with potential dose reduction relative to FBP of 22–47% for MBIR strength 3 (p < 0.001). For MBIR strength 5 no dose reduction was possible for image criteria 1 (liver parenchyma), but dose reduction between 34 and 74% was achieved for other criteria. Interobserver reliability showed agreement of 71–76% (κw 0.201–0.286) and intra-observer reliability of 82–96% (κw 0.525–0.783).

    Conclusion MBIR showed improved image quality compared to FBP with positive correlation between MBIR strength and increasing potential dose reduction for all but one image criterion.

  • 39.
    Kihlberg, Johan
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Kalra, Mannudeep
    Massachusetts General Hospital, Boston, USA.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    De Geer, Jakob
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Rönn, Martin
    ContextVision, Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Olofsson, Fredrik
    ContextVision, Linköping.
    Bäck, Anni
    ContextVision, Linköping.
    Applying 2D and 3D Postprocessing Algorithms to MR Images: Does Image Quality Improve? Can MR Imaging Duration Be Reduced?2010In: In Proceedings of RSNA 2010, SSM22, 2010Conference paper (Refereed)
  • 40.
    Kälvesten, Johan
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Sectra Imtec AB, Linköping, Sweden.
    Brismar, Torkel B.
    Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Potential sources of quantification error when retrospectively assessing metacarpal bone loss from historical radiographs by using digital X-ray radiogrammetry: an experimental study2014In: Journal of clinical densitometry, ISSN 1094-6950, E-ISSN 1559-0747, Vol. 17, no 1, p. 104-108Article in journal (Refereed)
    Abstract [en]

    During the past 15 yr, digital X-ray radiogrammetry (DXR) has been used to measure metacarpal bone mineral density (BMD). BMD is often measured in existing cohorts where X-ray images were not acquired in accordance with the DXR imaging protocol (DIP). The purpose of the present study was to analyze how deviations from DIP in historical radiographs may affect the reproducibility of DXR-BMD measurements. Cadaver hand phantoms were used to conduct repeat measurements of deviations from DIP with respect to voltage, exposure, lateral displacement, supination, combination of lateral displacement and supination or rotation, extension of the wrist, and edge enhancement. Direct digital radiography (Aristos; Siemens Healthcare, Erlangen, Germany) was used for image acquisition and dxr-online (Sectra, Linkoping, Sweden) for DXR-BMD measurements. The influence of the tested deviations from DIP ranged from 0 to 32.5 mg/cm(2) (0-6.8%). On repetition with the same specimen, none of the deviations resulted in a within-specimen reproducibility error greater than 2 mg/cm(2) (0.4%, equivalent to a T-score of 0.042). Among the tested deviations, all except tube voltage had a magnitude greater than the normal measurement noise for the technique and must therefore be considered when planning a study based on historical images.

  • 41.
    Lantz, Jonas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gupta, Vikas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Henriksson, Lilian
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI2018In: Radiology, ISSN 0033-8419, E-ISSN 1527-1315, Vol. 289, no 1, p. 51-58Article in journal (Refereed)
    Abstract [en]

    Purpose

    To investigate four-dimensional (4D) flow CT for the assessment of intracardiac blood flow patterns as compared with 4D flow MRI.

    Materials and Methods

    This prospective study acquired coronary CT angiography and 4D flow MRI data between February and December 2016 in a cohort of 12 participants (age range, 36–74 years; mean age, 57 years; seven men [age range, 36–74 years; mean age, 57 years] and five women [age range, 52–73 years; mean age, 64 years]). Flow simulations based solely on CT-derived cardiac anatomy were assessed together with 4D flow MRI measurements. Flow patterns, flow rates, stroke volume, kinetic energy, and flow components were quantified for both techniques and were compared by using linear regression.

    Results

    Cardiac flow patterns obtained by using 4D flow CT were qualitatively similar to 4D flow MRI measurements, as graded by three independent observers. The Cohen κ score was used to assess intraobserver variability (0.83, 0.79, and 0.70) and a paired Wilcoxon rank-sum test showed no significant change (P > .05) between gradings. Peak flow rate and stroke volumes between 4D flow MRI measurements and 4D flow CT measurements had high correlation (r = 0.98 and r = 0.81, respectively; P < .05 for both). Integrated kinetic energy quantified at peak systole correlated well (r = 0.95, P < .05), while kinetic energy levels at early and late filling showed no correlation. Flow component analysis showed high correlation for the direct and residual components, respectively (r = 0.93, P < .05 and r = 0.87, P < .05), while the retained and delayed components showed no correlation.

    Conclusion

    Four-dimensional flow CT produced qualitatively and quantitatively similar intracardiac blood flow patterns compared with the current reference standard, four-dimensional flow MRI.

    The full text will be freely available from 2018-12-26 12:49
  • 42.
    Lantz, Jonas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gupta, Vikas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Henriksson, Lilian
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Characterization of Cardiac Flow in Heart Disease Patients by CFD and 4D Flow MRI2017In: Bulletin of the Amerian Physcial Society, American Physical Society, 2017Conference paper (Refereed)
    Abstract [en]

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables “what if” scenarios, such as optimization of valve replacement and other surgical procedures.

  • 43.
    Lantz, Jonas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gupta, Vikas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Henriksson, Lilian
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    First Results of CT-derived Cardiac 4D Blood Flow - Comparison With 4D Flow MRI2017Conference paper (Other academic)
  • 44.
    Lantz, Jonas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Henriksson, Lilian
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Importance Of Including Papillary Muscles And Trabeculae In Cardiac Flow Simulations2016In: Proceedings of the 2016 Summer Biomechanics, Bioengineering and Biotransport Conference, Organizing Committee for the 2016 Summer Biomechanics, Bioengineering and Biotransport , 2016Conference paper (Other academic)
  • 45.
    Lantz, Jonas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Henriksson, Lilian
    Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography2016In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 138, no 12Article in journal (Refereed)
    Abstract [en]

    Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.

  • 46. Larsson, M
    et al.
    Persson, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Eriksson, P
    Extracting quantitative parameters from a mathematical model fitted to renal artery blood flow data obtained by magnetic resonance angiography2006In: ISMRM,2006, 2006Conference paper (Other academic)
  • 47.
    Larsson, Martin
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Eriksson, Per
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Nephrology.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Renal artery stenosis: extracting quantitative parameters with a mathematical model fitted to magnetic resonance blood flow data2008In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 27, no 1, p. 140-147Article in journal (Refereed)
    Abstract [en]

    Purpose: To investigate the feasibility of quantitative parameter extraction from a mathematical model fitted to renal artery magnetic resonance flow data.

    Material and methods: Sixteen subjects, 8 patients and 8 normal controls, were examined with cine phase-contrast velocity measurements, and blood flow data from the aorta and both renal arteries were extracted by means of contour detection. A mathematical model with eight parameters describing the time, duration and amplitude of the systolic acceleration and the diastolic deceleration was fitted to the aorta and renal artery blood flow data from each subject. The curve fitting was evaluated with R2 values. Statistical analysis was performed with unpaired Wilcoxon tests and stepwise logistic regression.

    Results: Three data sets out of 48 yielded R2 values below 0.80 and were considered unreliable for parameter estimation. Basal flow was significantly, and systolic peak amplitude almost significantly, lower in stenotic arteries. Logistic regression indicated that two parameters describing basal flow and the duration of acceleration can accurately predict stenosis.

    Conclusion: The results suggest that it is technically feasible to fit a mathematical model to renal blood flow data, extracting quantitative parameters that may prove useful for quantification and diagnosis of renal artery stenosis.

  • 48.
    Lidell, Martin E.
    et al.
    Medicinsk genetik, Göteborgs universitet.
    Betz, Matthias J.
    Medicinsk genetik, Göteborgs universitet.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Heglind, Mikael
    Medicinsk genetik, Göteborgs universitet.
    Elander, Louise
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Slawik, Marc
    Klinikum der Ludwig Maximilians University (LMU), Munich, Germany.
    Mussack, Thomas
    Klinikum der LMU, Munich, Germany.
    Nilsson, Daniel
    Medicinsk genetik, Göteborgs universitet.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Nuutila, Pirjo
    University of Turku, Turku, Finland.
    Virtanen, Kirsi A.
    University of Turku, Turku, Finland.
    Beuschlein, Felix
    Klinikum der Ludwig Maximilians University (LMU), Munich, Germany.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Enerbäck, Sven
    Medicinsk genetik, Göteborgs universitet.
    Evidence for two types of brown adipose tissue in humans2013In: Nature Medicine, ISSN 1078-8956, E-ISSN 1546-170X, Vol. 19, no 5, p. 631-634Article in journal (Refereed)
    Abstract [en]

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  • 49.
    Lindholm, Stefan
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ljung, Patric
    Siemens Corporate Research, USA .
    Lundström, Claes
    Sectra Imtec AB, Sweden .
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Spatial Conditioning of Transfer Functions Using Local Material Distributions2010In: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, ISSN 1077-2626, Vol. 16, no 6, p. 1301-1310Article in journal (Refereed)
    Abstract [en]

    In many applications of Direct Volume Rendering (DVR) the importance of a certain material or feature is highly dependent on its relative spatial location. For instance, in the medical diagnostic procedure, the patients symptoms often lead to specification of features, tissues and organs of particular interest. One such example is pockets of gas which, if found inside the body at abnormal locations, are a crucial part of a diagnostic visualization. This paper presents an approach that enhances DVR transfer function design with spatial localization based on user specified material dependencies. Semantic expressions are used to define conditions based on relations between different materials, such as only render iodine uptake when close to liver. The underlying methods rely on estimations of material distributions which are acquired by weighing local neighborhoods of the data against approximations of material likelihood functions. This information is encoded and used to influence rendering according to the users specifications. The result is improved focus on important features by allowing the user to suppress spatially less-important data. In line with requirements from actual clinical DVR practice, the methods do not require explicit material segmentation that would be impossible or prohibitively time-consuming to achieve in most real cases. The scheme scales well to higher dimensions which accounts for multi-dimensional transfer functions and multivariate data. Dual-Energy Computed Tomography, an important new modality in radiology, is used to demonstrate this scalability. In several examples we show significantly improved focus on clinically important aspects in the rendered images.

  • 50.
    Ljung, Patric
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Winskog, Calle
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundström, Claes
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Full Body Virtual Autopsies using a State-of-the-art Volume Rendering Pipeline2006In: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, Vol. 12, no 5, p. 869-876Article in journal (Refereed)
    Abstract [en]

    This paper presents a procedure for virtual autopsies based on interactive 3D visualizations of large scale, high resolution data from CT-scans of human cadavers. The procedure is described using examples from forensic medicine and the added value and future potential of virtual autopsies is shown from a medical and forensic perspective. Based on the technical demands of the procedure state-of-the-art volume rendering techniques are applied and refined to enable real-time, full body virtual autopsies involving gigabyte sized data on standard GPUs. The techniques applied include transfer function based data reduction using levelof- detail selection and multi-resolution rendering techniques. The paper also describes a data management component for large, out-of-core data sets and an extension to the GPU-based raycaster for efficient dual TF rendering. Detailed benchmarks of the pipeline are presented using data sets from forensic cases.

1234 1 - 50 of 154
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf