liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa spring meeting 06 Köpenhamn,2006, 2006Conference paper (Other academic)
  • 2.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa fall meeting 06 Glasgow,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 3.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Åsberg, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    von Post, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated polyelectrolytes as reporter molecules; biochip constructed by Soft litography methods2006In: ICSM summer 06 Dublin,2006, 2006Conference paper (Other academic)
    Abstract [en]

       

  • 4.
    Björk, Per
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Thomsson, Daniel
    Lund University.
    Mirzov, Oleg
    Lund University.
    Andersson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Scheblykin , Ivan G
    Lund University.
    Oligothiophene Assemblies Defined by DNA Interaction: From Single Chains to Disordered Clusters2009In: SMALL, ISSN 1613-6810 , Vol. 5, no 1, p. 96-103Article in journal (Refereed)
    Abstract [en]

    The organization of conjugated polyelectrolytes (CPEs) interacting with biomolecules sets conditions for the biodetection of biological processes and identity, through the use of optical emission from the CPE. Herein, a well-defined CPE and its binding to DNA is studied. By using dynamic light scattering and circular dichroism spectroscopy, it is shown that the CPE forms a multimolecule ensemble in aqueous solution that is more than doubled it? size when interacting with a small DNA chain, while single chains are evident in ethanol. The related changes in the fluorescence spectra upon polymer aggregation are assigned to oscillator strength redistribution between vibronic transitions in weakly coupled H-aggregates. An enhanced single-molecule spectroscopy technique that allows full control of excitation and emission light polarization is applied to combed and decorated;,DNA chains. It is found that the organization of combed CPE-lambda DNA complexes (when dry on the surface) allows considerable variation of CPE distances and direction relative to the DNA chain. By analysis of the polarization data. energy transfer between the polymer chains in individual complexes is confirmed and their sizes estimated.

  • 5.
    Hamedi, Mahiar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Tai, Feng-i
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Björk, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Polypeptide-guided assembly of conducting polymer nanocomposites2010In: NANOSCALE, ISSN 2040-3364, Vol. 2, no 10, p. 2058-2061Article in journal (Refereed)
    Abstract [en]

    A strategy for fabrication of electroactive nanocomposites with nanoscale organization, based on self-assembly, is reported. Gold nanoparticles are assembled by a polypeptide folding-dependent bridging. The polypeptides are further utilized to recruit and associate with a water soluble conducting polymer. The polymer is homogenously incorporated into the nanocomposite, forming conducting pathways which make the composite material highly conducting.

  • 6.
    Hamedi, Mahiar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Tai, Feng-I
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Björk, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Aili, Daniel
    Department of Materials and Institute of Bioengineering, Imperial College London, SW7 2AZ London, UK.
    Synthetic Polypeptides as Scaffolds for Supramolecular Assembly of Conducting Polymer Nanocomposites2010Manuscript (preprint) (Other academic)
    Abstract [en]

    The development of nanoelectronics has resulted in enormous advancements in fabrication techniques that have enabled massproduction of CMOS circuits with feature sizes below 45nm. There is a large interest in new methods to further push the size limits, lower the production costs and to facilitate the design of more advanced three-dimensional structures beyond today’s 2.5 dimensional architectures. Self-assembly is probably the most important scheme in this development and is currently applied to many different areas and classes of nanoelectronics. Self-assembly enables fabrication of structures well below 10 nm in feature size and allows for incorporation of novel nanomaterials, such as metallic and semiconducting nanoparticles with many interesting optical and electrical properties. The controlled self-assembly of electro-active nanocomposites is of great interest for the development of novel functional materials including biosensors, electrochromic/plasmonic hybrid devices, and polymer/nanoparticle-based memories.

  • 7.
    Hevekerl, Heike
    et al.
    Royal Institute Technology, Sweden .
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Persson, Gustav
    Royal Institute Technology, Sweden .
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Widengren, Jerker
    Royal Institute Technology, Sweden .
    Dark States in Ionic Oligothiophene Bioprobes-Evidence from Fluorescence Correlation Spectroscopy and Dynamic Light Scattering2014In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, no 22, p. 5924-5933Article in journal (Refereed)
    Abstract [en]

    Luminescent conjugated polyelectrolytes (LCPs) can upon interaction with biological macromolecules change their luminescent properties, and thereby serve as conformation- and interaction-sensitive biomolecular probes. However, to exploit this in a more quantitative manner, there is a need to better understand the photophysical processes involved. We report studies of the conjugated pentameric oligothiophene, derivative p-FTAA, which changes optical properties with different p-FTAA concentrations in aqueous buffers, and in a pH and oxygen saturation dependent manner. Using dynamic light scattering, luminescence spectroscopy and fluorescence correlation spectroscopy, we find evidence for a monomer dimer equilibrium, for the formation of large clusters of p-FTAA in aqueous environment, and can couple aggregation to changed emission properties of oligothiophenes. In addition, we observe the presence of at least two dark transient states, one presumably being a triplet state. Oxygen was found to statically quench the p-FTAA fluorescence but also to promote molecular fluorescence by quenching dark transient states of the p-FTAA molecules. Taken together, this study provides knowledge of fluorescence and photophysical features essential for applying p-FTAA and other oligothiophene derivatives for diagnostic purposes, including detection and staining of amyloid aggregates.

  • 8.
    Karlsson, Roger
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Herland, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Åslund, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity2009In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 21, no 9, p. 1815-1821Article in journal (Refereed)
    Abstract [en]

    Chemical polymerization of a 3,4-ethylenedioxythiophene derivative bearing a sulfonate group (EDOTS) is reported. The polymer, PEDOT-S, is fully water-soluble and has been produced by polymerizing EDOT-S in water, using Na2S2O8 and a catalytic amount of FeCl3. Elemental analysis and XPS measurements indicate that PEDOT-S is a material with a substantial degree of self-doping, but also contains free sulfate ions as charge-balancing counterions of the oxidized polymer. Apart from self-doping PEDOT-S, the side chains enable full water solubility of the material; DLS studies show an average cluster size of only 2 nm. Importantly, the solvation properties of the PEDOT-S are reflected in spin-coated films, which show a surface roughness of 1.2 nm and good conductivity (12 S/cm) in ambient conditions. The electro-optical properties of this material are shown with cyclic voltammetry and spectroelectrochemical experiment reveals an electrochromic contrast (similar to 48% at lambda(max) = 606 nm).

  • 9.
    Magnusson, Karin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Cieslar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Institute of Automatic Control, Silesian University of of TechnologyGliwice, Poland.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology. Carl Zeiss AB, Sweden.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Application Specialist Confocal Microscopy at Leica MicrosystemsIL, United States.
    Los, Marek Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Department of Pathology, Pomeranian Medical UniversitySzczecin, Poland.
    Kågedal, Bertil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
    Jonasson, Jon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Differential vital staining of normal fibroblasts and melanoma cells by an anionic conjugated polyelectrolyte2015In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 87, no 3, p. 262-272Article in journal (Refereed)
    Abstract [en]

    Molecular probes for imaging of live cells are of great interest for studying biological and pathological processes. The anionic luminescent conjugated polythiophene (LCP) polythiophene acetic acid (PTAA), has previously been used for vital staining of cultured fibroblasts as well as transformed cells with results indicating differential staining due to cell phenotype. Herein, we investigated the behavior of PTAA in two normal and five transformed cells lines. PTAA fluorescence in normal cells appeared in a peripheral punctated pattern whereas the probe was more concentrated in a one-sided perinuclear localization in the five transformed cell lines. In fibroblasts, PTAA fluorescence was initially associated with fibronectin and after 24 h partially localized to lysosomes. The uptake and intracellular target in malignant melanoma cells was more ambiguous and the intracellular target of PTAA in melanoma cells is still elusive. PTAA was well tolerated by both fibroblasts and melanoma cells, and microscopic analysis as well as viability assays showed no signs of negative influence on growth. Stained cells maintained their proliferation rate for at least 12 generations. Although the probe itself was nontoxic, photoinduced cellular toxicity was observed in both cell lines upon irradiation directly after staining. However, no cytotoxicity was detected when the cells were irradiated 24 h after staining, indicating that the photoinduced toxicity is dependent on the cellular location of the probe. Overall, these studies certified PTAA as a useful agent for vital staining of cells, and that PTAA can potentially be used to study cancer-related biological and pathological processes.

  • 10.
    Teixeira, A.I.
    et al.
    Karolinska Institute.
    Ilkhanizadeh, S.
    Karolinska Institute.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Duckworth, J.K.
    Karolinska Institute.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hermanson, O.
    Karolinska Institute.
    The promotion of neuronal maturation on soft substrates2009In: Biomaterials, ISSN 0142-9612, Vol. 30, no 27, p. 4567-4572Article in journal (Refereed)
    Abstract [en]

    Microenvironmental mechanical properties of stem cell niches vary across tissues and developmental stages. Accumulating evidence suggests that matching substrate elasticity with in vivo tissue elasticity facilitates stem cell differentiation. However, it has not been established whether substrate elasticity can control the maturation stage of cells generated by stem cell differentiation. Here we show that soft substrates with elasticities commensurable to the elasticity of the brain promote the maturation of neural stem cell-derived neurons. In the absence of added growth factors, neurons differentiated on soft substrates displayed long neurites and presynaptic terminals, contrasting with the bipolar immature morphology of neurons differentiated on stiff substrates. Further, soft substrates supported an increase in astrocytic differentiation. However, stiffness cues could not override the dependency of astrocytic differentiation on Notch signaling. These results demonstrate that substrate elasticity per se can drive neuronal maturation thus defining a crucial parameter in neuronal differentiation of stem cells.

  • 11.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Conjugated Polyelectrolytes in Interactions with Biomolecules for Supramolecular assembly and Sensing2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Conjugated polyelectrolytes (CP) show interesting electrical and optical properties for organic electronics as well as for life science applications. Their possibilities of supramolecular assembly with nanowire like misfolded proteins, amyloids, as well as synthetic polypeptides or DNA forming conducting or luminescent nano composites is highly interesting as being a truly bottom up approach for fabrication of OLEDs, photovoltaic’s as well as logic devices. The conformation and aggregation dependent luminescence properties from the special class of CPs, Luminescent conjugated polyelectrolytes (LCP), have been utilised and developed as sensors to follow and study biomolecular interactions, DNA hybridisation, protein-protein interactions and staining of living cell cultures and tissue slides. In this thesis we are bringing the evolution a few steps further by applying new types of experimental techniques, such as light scattering and fluorescence correlation spectroscopy, combined with standard techniques as soft lithography and different spectroscopy techniques, to gain better knowledge of the optical behaviour of LCPs and their interactions with biomolecules. We explore the optical properties and vibronic transitions of LCPs; their ability of resonance energy transfer with LCPs indicating super lightning behaviour; the opposite fluorescence shift when interacting with α-helical rich polypeptides compared to earlier reports of interactions upon staining of β-rich amyloids; and the possibility of LCPs to influence protein aggregation as well as the possibility of fabricating biochips based on LCPs and soft lithography. Here we also show fundamental limitations to patterning using macromolecular fluids, of general relevance to soft lithography and nanoimprint lithography with low viscosity polymers.

    List of papers
    1. Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography
    Open this publication in new window or tab >>Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography
    2008 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 17, p. 2563-2571Article in journal (Refereed) Published
    Abstract [en]

    Soft lithographic microcontact printing using the residual polydimethylsiloxane (PDMS) found in elastomeric PDMS stamps is demonstrated to lead to unstable prints with sub-micrometer dimensions. The statics and dynamics of the process have been followed with time-resolved atomic force microscopy, imaging ellipsometry, water contact angle measurement, and optical diffraction. It is proposed that this instability places a fundamental limitation on patterning by macromolecular fluids, which is of general relevance to soft lithography and nanoimprint lithography with low viscosity polymers.

    Keywords
    Lithography, microcontact printing (µCP), nanostructures, nanowires, surface patterning
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-42810 (URN)10.1002/adfm.200800073 (DOI)68960 (Local ID)68960 (Archive number)68960 (OAI)
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13
    2. Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes
    Open this publication in new window or tab >>Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes
    2008 (English)In: BIOINTERPHASES, ISSN 1559-4106 , Vol. 3, no 3, p. 75-82Article in journal (Refereed) Published
    Abstract [en]

    Patterning of proteins is critical to protein biochips. Printing of layers of proteins is well established, as is adsorption of proteins to surfaces properly modified with surface chemical functionalities. The authors show that simple methods based on soft lithography stamps can be used to prepare functional antibody chips through both these routes. Both methods incorporate transfer of the stamp material poly (dimethylsiloxane) (PDMS) to the biochip, whether intended or not intended. The results indicate that microcontact printing of proteins always includes PDMS transfer, thereby creating a possibility of unspecific adsorption to a hydrophobic domain.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-17907 (URN)10.1116/1.2988771 (DOI)
    Available from: 2009-04-26 Created: 2009-04-24 Last updated: 2010-04-20
    3. DNA Chips with Conjugated Polyelectrolytes in Resonance Energy Transfer Mode
    Open this publication in new window or tab >>DNA Chips with Conjugated Polyelectrolytes in Resonance Energy Transfer Mode
    Show others...
    2010 (English)In: LANGMUIR, ISSN 0743-7463, Vol. 26, no 5, p. 3753-3759Article in journal (Refereed) Published
    Abstract [en]

    We show how to use well-defined conjugated polyelectrolytes (CPEs) combined With Surface energy patterning to Fabricate DNA Chips utilizing A fluorescence signal amplification. Cholesterol-modified DNA strands in complex with it CPE are adsorbed to a surface energy pattern, formed by printing with soft elastomer stamps. Hybridization of the surface bound DNA strands with it short complementary strand from Solution is monitored using both fluorescence microscopy and imaging surface plasmon resonance. The CPEs act as antennas, enhancing resonance energy transfer to the dye-labeled DNA when complementary hybridization of the double strand occurs.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-54255 (URN)10.1021/la903101v (DOI)000274636900113 ()
    Available from: 2010-03-05 Created: 2010-03-05 Last updated: 2015-05-29
    4. Oligothiophene Assemblies Defined by DNA Interaction: From Single Chains to Disordered Clusters
    Open this publication in new window or tab >>Oligothiophene Assemblies Defined by DNA Interaction: From Single Chains to Disordered Clusters
    Show others...
    2009 (English)In: SMALL, ISSN 1613-6810 , Vol. 5, no 1, p. 96-103Article in journal (Refereed) Published
    Abstract [en]

    The organization of conjugated polyelectrolytes (CPEs) interacting with biomolecules sets conditions for the biodetection of biological processes and identity, through the use of optical emission from the CPE. Herein, a well-defined CPE and its binding to DNA is studied. By using dynamic light scattering and circular dichroism spectroscopy, it is shown that the CPE forms a multimolecule ensemble in aqueous solution that is more than doubled it? size when interacting with a small DNA chain, while single chains are evident in ethanol. The related changes in the fluorescence spectra upon polymer aggregation are assigned to oscillator strength redistribution between vibronic transitions in weakly coupled H-aggregates. An enhanced single-molecule spectroscopy technique that allows full control of excitation and emission light polarization is applied to combed and decorated;,DNA chains. It is found that the organization of combed CPE-lambda DNA complexes (when dry on the surface) allows considerable variation of CPE distances and direction relative to the DNA chain. By analysis of the polarization data. energy transfer between the polymer chains in individual complexes is confirmed and their sizes estimated.

    Keywords
    aggregation, conjugated polymers, DNA, fluorescence, single-molecule spectroscopy
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-16829 (URN)10.1002/smll.200800855 (DOI)
    Available from: 2009-02-20 Created: 2009-02-20 Last updated: 2010-04-20
    5. Dark states in oligothiophenes: evidence from fluorescence correlation spectroscopy and dynamic light scattering
    Open this publication in new window or tab >>Dark states in oligothiophenes: evidence from fluorescence correlation spectroscopy and dynamic light scattering
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    We report studies of the conjugated pentameric oligothiophene derivative p-FTAA, which changes optical properties in aqueous buffers of varying pH and concentration. Using dynamic light scattering, luminescence spectroscopy and fluorescence correlation spectroscopy, we find evidence for the formation of large clusters of p-FTAA in aqueous environment, formation of very large non-emissive clusters, and the presence of at least two dark transient states, one presumably being a triplet state. The clustering of p-FTAA is therefore an important mechanism. This work provides an interpretation of fluorescence spectra used for the detection of misfolding proteins through interaction with p-FTAA.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-54897 (URN)
    Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2014-04-08
    6. Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phases of amyloid formation
    Open this publication in new window or tab >>Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phases of amyloid formation
    2011 (English)In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 11, no 8, p. 1120-1127Article in journal (Refereed) Published
    Abstract [en]

    Folding of an amino acid polypeptide chain into its native three-dimensional protein is a delicate process. Misfolding may cause assembly of dysfunctional proteins leading to aggregated assemblies, in medicine denoted amyloids, causing Alzheimer’s, Parkinson and a number of other protein related diseases. Amyloids have also shown promising results as building blocks in organic electronic applications, associated to conjugated polymers. Luminescent conjugated oligo- and polythiophenes (LCPs) have been further developed for biosensor applications exhibiting good ability to discriminate and determine different types of amyloid enrichment in complex environments, such as in tissue sections. The nature of interaction between the amyloid assemblies and LCPs is still not fully understood. In this study we use steady-state fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy and fluorescence correlation spectroscopy to follow the interplay between the anionic oligothiophene derivative 4',3'''-Bis-carboxymethyl-[2,2';5',2'';5'',2''';5''',2'''']quinque thiophene-5,5''''-dicarboxylic acid (p-FTAA), and prefibrillar protein assemblies present during the earlier stage of in vitro fibrillation of bovine insulin. Our findings confirm that p-FTAA interacts with pre-fibrillar species of insulin preceding the formation of mature insulin amyloid fibrils, and insights regarding the molecular interplay between p-FTAA and these species are provided.

    Place, publisher, year, edition, pages
    Wiley, 2011
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-54898 (URN)10.1002/mabi.201100016 (DOI)000294160900011 ()
    Note
    Funding Agencies|Swedish Science Council (VR)||Strategic Research Foundation (SSF) through the center for organic bioelectronics (OBOE)||Knut and Alice Wallenberg foundation||Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2017-12-12
    7. Supramolecular Assembly of Designed α-Helical Polypeptide-Based Nanostructures and Luminescent Conjugated Polyelectrolytes
    Open this publication in new window or tab >>Supramolecular Assembly of Designed α-Helical Polypeptide-Based Nanostructures and Luminescent Conjugated Polyelectrolytes
    2010 (English)In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 10, no 8, p. 836-841Article in journal (Refereed) Published
    Abstract [en]

    Designed polypeptides with controllable folding properties are utilized as supramolecular templates for fabrication of ordered nanoscale molecular and fibrous assemblies of luminescent conjugated polymers (LCPs). The properties of the LCPs as well as the three dimensional conformation of the polypeptide-scaffold determine how the polymers are arranged in the supramolecular construct, which highly affects the properties of the hybrid material. The ability to control the polypeptide conformation and assembly into fibers provide a promising route for tuning the optical properties of LCPs and for fabrication of complex functional supramolecules with well defined structural properties.

    Place, publisher, year, edition, pages
    John Wiley & Sons, 2010
    Keywords
    α-helical; conjugated polymers; hybrid materials; peptides; self-assembly
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-54899 (URN)10.1002/mabi.200900463 (DOI)000281387900002 ()
    Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2017-12-12Bibliographically approved
    8. Synthetic Polypeptides as Scaffolds for Supramolecular Assembly of Conducting Polymer Nanocomposites
    Open this publication in new window or tab >>Synthetic Polypeptides as Scaffolds for Supramolecular Assembly of Conducting Polymer Nanocomposites
    Show others...
    2010 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The development of nanoelectronics has resulted in enormous advancements in fabrication techniques that have enabled massproduction of CMOS circuits with feature sizes below 45nm. There is a large interest in new methods to further push the size limits, lower the production costs and to facilitate the design of more advanced three-dimensional structures beyond today’s 2.5 dimensional architectures. Self-assembly is probably the most important scheme in this development and is currently applied to many different areas and classes of nanoelectronics. Self-assembly enables fabrication of structures well below 10 nm in feature size and allows for incorporation of novel nanomaterials, such as metallic and semiconducting nanoparticles with many interesting optical and electrical properties. The controlled self-assembly of electro-active nanocomposites is of great interest for the development of novel functional materials including biosensors, electrochromic/plasmonic hybrid devices, and polymer/nanoparticle-based memories.

    Keywords
    Conducting Polymers, Organic Electronics, Conducting Nanowires, Self- Assembly, Supramolecular Materials
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-54901 (URN)
    Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2010-04-20
  • 12.
    Wigenius, Jens A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Persson, Gustav
    Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry . Linköping University, The Institute of Technology.
    Widengren, Jerker
    Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Dark states in oligothiophenes: evidence from fluorescence correlation spectroscopy and dynamic light scatteringManuscript (preprint) (Other academic)
    Abstract [en]

    We report studies of the conjugated pentameric oligothiophene derivative p-FTAA, which changes optical properties in aqueous buffers of varying pH and concentration. Using dynamic light scattering, luminescence spectroscopy and fluorescence correlation spectroscopy, we find evidence for the formation of large clusters of p-FTAA in aqueous environment, formation of very large non-emissive clusters, and the presence of at least two dark transient states, one presumably being a triplet state. The clustering of p-FTAA is therefore an important mechanism. This work provides an interpretation of fluorescence spectra used for the detection of misfolding proteins through interaction with p-FTAA.

  • 13.
    Wigenius, Jens A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Persson, Gustav
    Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
    Widengren, Jerker
    Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phases of amyloid formation2011In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 11, no 8, p. 1120-1127Article in journal (Refereed)
    Abstract [en]

    Folding of an amino acid polypeptide chain into its native three-dimensional protein is a delicate process. Misfolding may cause assembly of dysfunctional proteins leading to aggregated assemblies, in medicine denoted amyloids, causing Alzheimer’s, Parkinson and a number of other protein related diseases. Amyloids have also shown promising results as building blocks in organic electronic applications, associated to conjugated polymers. Luminescent conjugated oligo- and polythiophenes (LCPs) have been further developed for biosensor applications exhibiting good ability to discriminate and determine different types of amyloid enrichment in complex environments, such as in tissue sections. The nature of interaction between the amyloid assemblies and LCPs is still not fully understood. In this study we use steady-state fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy and fluorescence correlation spectroscopy to follow the interplay between the anionic oligothiophene derivative 4',3'''-Bis-carboxymethyl-[2,2';5',2'';5'',2''';5''',2'''']quinque thiophene-5,5''''-dicarboxylic acid (p-FTAA), and prefibrillar protein assemblies present during the earlier stage of in vitro fibrillation of bovine insulin. Our findings confirm that p-FTAA interacts with pre-fibrillar species of insulin preceding the formation of mature insulin amyloid fibrils, and insights regarding the molecular interplay between p-FTAA and these species are provided.

  • 14.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Björk, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Aili, Daniel
    Department of Materials, Imperial College London, SW7 2AZ London, UK.
    Supramolecular Assembly of Designed α-Helical Polypeptide-Based Nanostructures and Luminescent Conjugated Polyelectrolytes2010In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 10, no 8, p. 836-841Article in journal (Refereed)
    Abstract [en]

    Designed polypeptides with controllable folding properties are utilized as supramolecular templates for fabrication of ordered nanoscale molecular and fibrous assemblies of luminescent conjugated polymers (LCPs). The properties of the LCPs as well as the three dimensional conformation of the polypeptide-scaffold determine how the polymers are arranged in the supramolecular construct, which highly affects the properties of the hybrid material. The ability to control the polypeptide conformation and assembly into fibers provide a promising route for tuning the optical properties of LCPs and for fabrication of complex functional supramolecules with well defined structural properties.

  • 15.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Reporter Molecules2007In: E-MRS 2007 Strasbourg,2007, 2007Conference paper (Refereed)
  • 16.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Reporter Molecules;Biochip Constructed by Soft Litography Method2007In: BIOSCOPE 2007,2007, 2007Conference paper (Other academic)
    Abstract [en]

       

  • 17.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Fransson, Sophia
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    von Post, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Inganäs , Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes2008In: BIOINTERPHASES, ISSN 1559-4106 , Vol. 3, no 3, p. 75-82Article in journal (Refereed)
    Abstract [en]

    Patterning of proteins is critical to protein biochips. Printing of layers of proteins is well established, as is adsorption of proteins to surfaces properly modified with surface chemical functionalities. The authors show that simple methods based on soft lithography stamps can be used to prepare functional antibody chips through both these routes. Both methods incorporate transfer of the stamp material poly (dimethylsiloxane) (PDMS) to the biochip, whether intended or not intended. The results indicate that microcontact printing of proteins always includes PDMS transfer, thereby creating a possibility of unspecific adsorption to a hydrophobic domain.

  • 18.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography2008In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 17, p. 2563-2571Article in journal (Refereed)
    Abstract [en]

    Soft lithographic microcontact printing using the residual polydimethylsiloxane (PDMS) found in elastomeric PDMS stamps is demonstrated to lead to unstable prints with sub-micrometer dimensions. The statics and dynamics of the process have been followed with time-resolved atomic force microscopy, imaging ellipsometry, water contact angle measurement, and optical diffraction. It is proposed that this instability places a fundamental limitation on patterning by macromolecular fluids, which is of general relevance to soft lithography and nanoimprint lithography with low viscosity polymers.

  • 19.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Limits to Nanopatterning of Fluids on Surfaces2007In: E-MRS Strasbourg 2007,2007, 2007Conference paper (Other academic)
  • 20.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Magnusson, Karin
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Björk, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Andersson, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    DNA Chips with Conjugated Polyelectrolytes in Resonance Energy Transfer Mode2010In: LANGMUIR, ISSN 0743-7463, Vol. 26, no 5, p. 3753-3759Article in journal (Refereed)
    Abstract [en]

    We show how to use well-defined conjugated polyelectrolytes (CPEs) combined With Surface energy patterning to Fabricate DNA Chips utilizing A fluorescence signal amplification. Cholesterol-modified DNA strands in complex with it CPE are adsorbed to a surface energy pattern, formed by printing with soft elastomer stamps. Hybridization of the surface bound DNA strands with it short complementary strand from Solution is monitored using both fluorescence microscopy and imaging surface plasmon resonance. The CPEs act as antennas, enhancing resonance energy transfer to the dye-labeled DNA when complementary hybridization of the double strand occurs.

1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf