liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blockhuys, S.
    et al.
    Department Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .
    Celauro, E.
    Department Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Feizi, A.
    Department Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .
    Stål, Olle
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Fierro-González, J.C.
    Department Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .
    Wittung-Stafshede, P.
    Department Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .
    Defining the human copper proteome and analysis of its expression variation in cancers.2017In: Metallomics : integrated biometal science, ISSN 1756-591X, Vol. 9, no 2, p. 112-123Article in journal (Refereed)
    Abstract [en]

    Copper (Cu) is essential for living organisms, and acts as a cofactor in many metabolic enzymes. To avoid the toxicity of free Cu, organisms have specific transport systems that 'chaperone' the metal to targets. Cancer progression is associated with increased cellular Cu concentrations, whereby proliferative immortality, angiogenesis and metastasis are cancer hallmarks with defined requirements for Cu. The aim of this study is to gather all known Cu-binding proteins and reveal their putative involvement in cancers using the available database resources of RNA transcript levels. Using the database along with manual curation, we identified a total of 54 Cu-binding proteins (named the human Cu proteome). Next, we retrieved RNA expression levels in cancer versus normal tissues from the TCGA database for the human Cu proteome in 18 cancer types, and noted an intricate pattern of up- and downregulation of the genes in different cancers. Hierarchical clustering in combination with bioinformatics and functional genomics analyses allowed for the prediction of cancer-related Cu-binding proteins; these were specifically inspected for the breast cancer data. Finally, for the Cu chaperone ATOX1, which is the only Cu-binding protein proposed to have transcription factor activities, we validated its predicted over-expression in patient breast cancer tissue at the protein level. This collection of Cu-binding proteins, with RNA expression patterns in different cancers, will serve as an excellent resource for mechanistic-molecular studies of Cu-dependent processes in cancer.

  • 2.
    Blockhuys, Stephanie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Chalmers University of Technology, Sweden.
    Rani Agarwal, Nisha
    Chalmers University of Technology, Sweden; McMaster University, Canada; McMaster University, Canada.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Jarlsfelt, Ingvar
    Ryhov Hospital, Sweden.
    Wittung-Stafshede, Pernilla
    Chalmers University of Technology, Sweden.
    Sun, Xiao-Feng
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Second harmonic generation for collagen I characterization in rectal cancer patients with and without preoperative radiotherapy2017In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 22, no 10, article id 106006Article in journal (Refereed)
    Abstract [en]

    Rectal cancer is treated with preoperative radiotherapy (RT) to downstage the tumor, reduce local recurrence, and improve patient survival. Still, the treatment outcome varies significantly and new biomarkers are desired. Collagen I (Col-I) is a potential biomarker, which can be visualized label-free by second harmonic generation (SHG). Here, we used SHG to identify Col-I changes induced by RT in surgical tissue, with the aim to evaluate the clinical significance of RT-induced Col-I changes. First, we established a procedure for quantitative evaluation of Col-I by SHG in CDX2-stained tissue sections. Next, we evaluated Col-I properties in material from 31 non-RT and 29 RT rectal cancer patients. We discovered that the Col-I intensity and anisotropy were higher in the tumor invasive margin than in the inner tumor and normal mucosa, and RT increased and decreased the intensity in inner tumor and normal mucosa, respectively. Furthermore, higher Col-I intensity in the inner tumor was related to increased distant recurrence in the non-RT group but to longer survival in the RT group. In conclusion, we present a new application of SHG for quantitative analysis of Col-I in surgical material, and the first data suggest Col-I intensity as a putative prognostic biomarker in rectal cancer. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

  • 3.
    Danielsson, Pär
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Fredriksson, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences.
    Huss, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    A Novel Concept for Treating Large Necrotizing Fasciitis Wounds With Bilayer Dermal Matrix, Split-thickness Skin Grafts, and Negative Pressure Wound Therapy2009In: Wounds (King of Prussia, Pa.), ISSN 1044-7946, E-ISSN 1943-2704, Vol. 21, no 8, p. 215-220Article in journal (Refereed)
    Abstract [en]

    Treatment of necrotizing fasciitis (NF) includes radical surgical debridement often resulting in large wounds that need to be closed with methods including split-thickness skin grafts (STSG), local flaps, or guided tissue regeneration procedures. In this case report, a 45 year-old Caucasian male was surgically treated for a benign left groin hernia, developed NF, and was transferred to the authors burn unit. The wound was treated initially with wide debridement and with a brief delay before finally closing the wound. A collagen matrix such as Integra (R) Dermal Regeneration Template (Integra LifeSciences, Plainsboro, NJ) in combination with STSG and negative pressure wound treatment, can provide fast recovery resulting in pliable, functional skin.

  • 4.
    Fredriksson, Camilla
    Linköping University, Department of Biomedicine and Surgery, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences.
    Keratinocytes in tissue engineering of human skin: invitro and in vivo studies2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Full thickness wounds, such as deep burns, need restoration of both the dermal and epidermal layers of the skin. In normal wound healing, re-epithelialization occurs by migration and proliferation of keratinocytes from the wound edges and by differentiation of stem cells from remaining hair follicles. Restoration of dermis occurs by influx of growth factors secreted by macrophages, platelets, and fibroblasts; by fibroblast proliferation and subsequent synthesis and remodeling of collagenous dermal matrix. In the case of full-thickness acute burn injuries and chronic wounds (e.g. pressure ulcers, venous ulcers and diabetic foot ulcers), these processes are defective. With the principles of tissue engineering in mind (to correct, improve and maintain tissues and their functions), researchers have developed promising materials and methods to make it possible to restore either the dermal (Integra® DRT, Alloderm®) or the epidermal layer (split thickness skin grafts (STSG), cultured epithelial autografts (CEA), autologous keratinocytes in single cell suspension). It is now well established that superior results are obtained if both dermal and epidermal components are combined, for example in a bilayered skin equivalent. Apligraf® is recommended for use on venous ulcers and is the only bilayered living skin equivalent currently approved by the FDA. Studies on different factors affecting the wound healing capacity as well as techniques in use provide valuable information for further development.

    In this licentiate thesis, we evaluated different transplantation techniques for delivering cultured human keratinocytes in single cell suspension, a measure becoming more frequently used in addition to STSG and CEA for restoring the epidermal layer of the skin. We found that the pressure device, commonly used to spray cell suspension onto the wound with pressures as high as 200 kPa, killed around 0% of the cells. In comparison, an ordinary syringe with the attachment of a spray nozzle showed almost 90% viable cells post transplantation and provided an equally good distribution of the cell suspension.

    We also studied different silver containing dressings regarding silver accumulation in human skin. In addition, we graded the re-epithelialization to evaluate whether the dressings caused any delay in the wound healing process. We found that the silver dressings tested, with few exceptions, caused dermal accumulation of silver, primarily aggregated around blood vessels. We could also show that most of the dressings had negative effect on the re-epithelialization.

    For the restoration of the dermal layer of the skin, Integra® DRT functions as a scaffold for guided tissue regeneration of the dermis. We had the possibility to study a case of necrotizing fasciitis were the treatment consisted of the use of Integra® DTR together with sub-atmospheric pressure (after initial surgical debridement) and later transplantation of split thickness skin grafts. This measure proved to be safe as well as giving satisfactory pliable and aesthetically acceptable result.

    List of papers
    1. Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques
    Open this publication in new window or tab >>Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques
    2008 (English)In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 34, no 2, p. 212-219Article in journal (Refereed) Published
    Abstract [en]

    Transplantation of autologous cultured keratinocytes in single cell suspension is useful in the treatment of burns. The reduced time needed for culture, and the fact that keratinocytes in suspension can be transported from the laboratory to the patient in small vials, thus reducing the costs involved and be stored (frozen) in the clinic for transplantation when the wound surfaces are ready, makes it appealing. We found few published data in the literature about actual cell survival after transplantation of keratinocytes in single cell suspension and so did a comparative in vitro study, considering commonly used application techniques. Human primary keratinocytes were transplanted in vitro in a standard manner using different techniques. Keratinocytes were counted before and after transplantation, were subsequently allowed to proliferate, and counted again on days 4, 8, and 14 by vital staining. Cell survival varied, ranging from 47% to >90%, depending on the technique. However, the proliferation assays showed that the differences in numbers diminished after 8 days of culture. Our findings indicate that a great number of cells die during transplantation but that this effect is diminished if cells are allowed to proliferate in an optimal milieu. A burned patient’s wounds cannot be regarded as the optimal milieu, and using less harsh methods of transplantation may increase the take rate and wound closing properties of autologous keratinocytes transplanted in a single cell suspension.

    Place, publisher, year, edition, pages
    Institutionen för klinisk och experimentell medicin, 2008
    Keywords
    Burns, Cell culture, In vitro, Keratinocytes, Transplantation
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-11214 (URN)10.1016/j.burns.2007.03.008 (DOI)
    Note
    Original publication: Camilla Fredriksson, Gunnar Kratz and Fredrik Huss, Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques, 2008, Burns, (34), 2, 212-219. http://dx.doi.org/10.1016/j.burns.2007.03.008. Copyright: Elsevier B.V., http://www.elsevier.com/Available from: 2008-03-07 Created: 2008-03-07 Last updated: 2017-12-13Bibliographically approved
    2. Accumulation of Silver and Delayed Re-epithelialization in Normal Human Skin: An ex-vivo Study of Different Silver Dressings
    Open this publication in new window or tab >>Accumulation of Silver and Delayed Re-epithelialization in Normal Human Skin: An ex-vivo Study of Different Silver Dressings
    2009 (English)In: WOUNDS-A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE, ISSN 1044-7946, Vol. 21, no 5, p. 116-123Article in journal (Refereed) Published
    Abstract [en]

    Silver is commonly used in wound dressings and topical formulations to assist in the management of wounds that are infected or at risk of becoming infected. They provide potent broad-spectrum antimicrobial activity, but should not cause sustained staining of the skin, dermal or systemic accumulation of silver, or discomfort to the patient. However, clinicians and healthcare personnel have been concerned about topical staining of the skin and complaints of additional pain from patients treated with certain silver dressings. Some delay in re-epithelialization has also been noticed and reported. The reasons for this are not clear, and the authors believed further study regarding the possible effects of silver accumulation and silver dressings effect on re-epithelialization was required. The authors studied possible silver accumulation and re-epithelialization in normal human dermal skin. The results showed that most of the dressings or treatments discolored the wound surface and that there was a dermal accumulation of what were assumed to be silver particles. Varying grades of accumulation were found in deep dermal tissue, particularly around blood vessels, depending on the dressing used. The results also indicated that all of the tested products delayed re-epithelialization in this model.

    National Category
    Cell and Molecular Biology
    Identifiers
    urn:nbn:se:liu:diva-19124 (URN)
    Available from: 2009-06-12 Created: 2009-06-12 Last updated: 2018-01-13Bibliographically approved
    3. A Novel Concept for Treating Large Necrotizing Fasciitis Wounds With Bilayer Dermal Matrix, Split-thickness Skin Grafts, and Negative Pressure Wound Therapy
    Open this publication in new window or tab >>A Novel Concept for Treating Large Necrotizing Fasciitis Wounds With Bilayer Dermal Matrix, Split-thickness Skin Grafts, and Negative Pressure Wound Therapy
    2009 (English)In: Wounds (King of Prussia, Pa.), ISSN 1044-7946, E-ISSN 1943-2704, Vol. 21, no 8, p. 215-220Article in journal (Refereed) Published
    Abstract [en]

    Treatment of necrotizing fasciitis (NF) includes radical surgical debridement often resulting in large wounds that need to be closed with methods including split-thickness skin grafts (STSG), local flaps, or guided tissue regeneration procedures. In this case report, a 45 year-old Caucasian male was surgically treated for a benign left groin hernia, developed NF, and was transferred to the authors burn unit. The wound was treated initially with wide debridement and with a brief delay before finally closing the wound. A collagen matrix such as Integra (R) Dermal Regeneration Template (Integra LifeSciences, Plainsboro, NJ) in combination with STSG and negative pressure wound treatment, can provide fast recovery resulting in pliable, functional skin.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-20581 (URN)000269472900006 ()
    Note

    Funding text: "We express our sincere gratitude to Mrs. Kristina Briheim and Mrs. Anita Lonn, Senior Laboratory Technicians at the Laboratory for Experimental Plastic Surgery, Institute of Biomedicine and Surgery, Faculty Of Health Sciences, Linkoping Universitet, Linkoping, Sweden."

    Available from: 2009-09-15 Created: 2009-09-15 Last updated: 2017-12-13Bibliographically approved
  • 5.
    Fredriksson, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences. Berzelius Clinical Research Center, Berzelius Science Park, Linköping, Sweden.
    Hedhammar, My
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Uppsala, Sweden.
    Feinstein, Ricardo
    National Veterinary Institute, Uppsala, Sweden.
    Nordling, Kerstin
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Uppsala, Sweden.
    Kratz, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery and Burns.
    Johansson, Jan
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Uppsala, Sweden.
    Huss, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery and Burns.
    Rising, Anna
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Uppsala, Sweden.
    Tissue Response to Subcutaneously Implanted Recombinant Spider Silk: An in Vivo Study2009In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 2, no 4, p. 1908-1922Article in journal (Refereed)
    Abstract [en]

    Spider silk is an interesting biomaterial for medical applications. Recently, a method for production of recombinant spider silk protein (4RepCT) that forms macroscopic fibres in physiological solution was developed. Herein, 4RepCT and Mersilk(TM) (control) fibres were implanted subcutaneously in rats for seven days, without any negative systemic or local reactions. The tissue response, characterised by infiltration of macrophages and multinucleated cells, was similar with both fibres, while only the 4RepCT-fibres supported ingrowth of fibroblasts and newly formed capillaries. This in vivo study indicates that 4RepCT-fibres are well tolerated and could be used for medical applications, e. g., tissue engineering.

  • 6.
    Fredriksson, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences.
    Ilias, Michail
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Dermatology and Venerology in Östergötland.
    New mechanical device for effective removal of skin tags in routine health care2009In: Dermatologi Online, ISSN 1087-2108, E-ISSN 1087-2108, Vol. 15, no 2, article id 9Article in journal (Refereed)
    Abstract [en]

    Skin tags (acrochordons) are exceedingly common benign skin lesions. A novel medical device in the form of a flat adhesive patch applies pressure to the base of a skin tag, leading to its removal within 3-6 days. The device was used in a clinical trial to treat and remove skin tags of the neck, upper torso, and axillae in volunteers. In this study, a total of 177 skin tags were treated in 32 individuals. One hundred seventy-two lesions fulfilled intention to treat (ITT) criteria. A majority of ITT lesions (90%) reached final assessment. Successful outcome was highest (90%) for lesions up to 1 mm in base. For lesions up to 2 mm, the rate of successful outcome was 76 percent. The desired outcome was seen in 65 percent of all ITT lesions. The cosmetic outcome after removal was excellent. Discomfort was assessed as minimal during all stages of the procedure. Analysis of data on blood flow in the skin tags during the treatment showed that the outcome was influenced by whether a decrease in blood flow was achieved immediately after application and at 2-3 days, but that the degree of occlusion was not critical. The results of this study illustrate that the device presents a new option for the management of unmet needs in the treatment of skin tags.

  • 7.
    Fredriksson, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences.
    Kratz, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Huss, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Accumulation of Silver and Delayed Re-epithelialization in Normal Human Skin: An ex-vivo Study of Different Silver Dressings2009In: WOUNDS-A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE, ISSN 1044-7946, Vol. 21, no 5, p. 116-123Article in journal (Refereed)
    Abstract [en]

    Silver is commonly used in wound dressings and topical formulations to assist in the management of wounds that are infected or at risk of becoming infected. They provide potent broad-spectrum antimicrobial activity, but should not cause sustained staining of the skin, dermal or systemic accumulation of silver, or discomfort to the patient. However, clinicians and healthcare personnel have been concerned about topical staining of the skin and complaints of additional pain from patients treated with certain silver dressings. Some delay in re-epithelialization has also been noticed and reported. The reasons for this are not clear, and the authors believed further study regarding the possible effects of silver accumulation and silver dressings effect on re-epithelialization was required. The authors studied possible silver accumulation and re-epithelialization in normal human dermal skin. The results showed that most of the dressings or treatments discolored the wound surface and that there was a dermal accumulation of what were assumed to be silver particles. Varying grades of accumulation were found in deep dermal tissue, particularly around blood vessels, depending on the dressing used. The results also indicated that all of the tested products delayed re-epithelialization in this model.

  • 8.
    Fredriksson, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns . Linköping University, Faculty of Health Sciences.
    Kratz, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Plastic Surgery, Hand Surgery and Burns . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Huss, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques2008In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 34, no 2, p. 212-219Article in journal (Refereed)
    Abstract [en]

    Transplantation of autologous cultured keratinocytes in single cell suspension is useful in the treatment of burns. The reduced time needed for culture, and the fact that keratinocytes in suspension can be transported from the laboratory to the patient in small vials, thus reducing the costs involved and be stored (frozen) in the clinic for transplantation when the wound surfaces are ready, makes it appealing. We found few published data in the literature about actual cell survival after transplantation of keratinocytes in single cell suspension and so did a comparative in vitro study, considering commonly used application techniques. Human primary keratinocytes were transplanted in vitro in a standard manner using different techniques. Keratinocytes were counted before and after transplantation, were subsequently allowed to proliferate, and counted again on days 4, 8, and 14 by vital staining. Cell survival varied, ranging from 47% to >90%, depending on the technique. However, the proliferation assays showed that the differences in numbers diminished after 8 days of culture. Our findings indicate that a great number of cells die during transplantation but that this effect is diminished if cells are allowed to proliferate in an optimal milieu. A burned patient’s wounds cannot be regarded as the optimal milieu, and using less harsh methods of transplantation may increase the take rate and wound closing properties of autologous keratinocytes transplanted in a single cell suspension.

  • 9.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Fluorescence spectroscopy and optical coherence tomography for brain tumor detection2016Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. Recently, neurosurgical microscopes have been modified to incorporate fluorescence modules for detection of tumor when 5-aminolevulinic acid (5-ALA) is used as a contrast. We have in combination with the fluorescence microscopes implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) in the gliomas in 50 patients intraoperatively. The results show a significantly high sensitivity for differentiating tumor from the healthy tissue and distinguished fluorescence intensity levels in the tumor cell infiltration zone around the tumor. However, knowledge on association of the quantified fluorescence signals specifically in the intermediate inflammatory zone with the infiltrative tumor cells can be complemented with volumetric tissue imaging and a higher precision histopathological analysis. In this work, a spectral domain optical coherence tomography (OCT) system with central wavelength of 1325nm has been used to image the tissue volume that the fluorescence is collected from and is evaluated against histopathological analysis for a higher precision slicing. The results show that although healthy brain has a homogenous microstructure in the OCT images, the brain tumor shows a distinguished texture in the images correlated with the PpIX fluorescence intensity and histopathology.

  • 10.
    Haj-Hosseini, Neda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Milos, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Detection of brain tumor using fluorescence and optical coherence tomography2015Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. We have previously implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid induced protoporphyrin IX (PpIX) in the gliomas. To add another dimension to the brain tumor detection and volumetric analysis of the tissue that exhibits fluorescence, optical coherence tomography was investigated on tumor specimens.

    Material and Methods:

    A fluorescence microscopy and a spectroscopy system as reported previously were used for detecting the fluorescence signals [1, 2]. A total of 50 patients have been included for intraoperative assessment of the tumor borders using the fluorescence techniques. A spectral domain OCT imaging system (TELESTO II, Thorlabs, Inc., NJ, USA) with central wavelength of 1325 nm was used to study the tissue microstructure post operatively. The system has a resolution of 13 and 5.5 μm in the lateral and axial directions, respectively. Tissue specimens from three patients undergoing brain tumor surgery were studied using the OCT system.

    Results and Conclusion:

    Using fluorescence spectroscopy the tumor could be detected with a sensitivity of 0.84 which was significantly higher than that of the surgical microscope (0.30). Brain tissue appeared rather homogeneous in the OCT images however the highly malignant tissue showed a clear structural difference from the non-malignant or low malignant brain tumor tissue which could be related to the fluorescence signal intensities.

  • 11.
    Sardar Sinha, Maitrayee
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Ansell - Schultz, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Civitelli, Livia
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Larsson, Max
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Lannfelt, Lars
    Uppsala Univ, Sweden; BioArctic AB, Sweden.
    Ingelsson, Martin
    Uppsala Univ, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Alzheimers disease pathology propagation by exosomes containing toxic amyloid-beta oligomers2018In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 136, no 1, p. 41-56Article in journal (Refereed)
    Abstract [en]

    The gradual deterioration of cognitive functions in Alzheimers disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimers disease and that they could serve as targets for development of new diagnostic and therapeutic principles.

  • 12.
    Wickham, Abeni
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Bergström, Gunnar
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering.
    Wang, Ergang
    Chalmers, Sweden.
    Rajendran, Vijayalakshmi
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Skoglund, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Near-Infrared Emitting and Pro-Angiogenic Electrospun Conjugated Polymer Scaffold for Optical Biomaterial Tracking2015In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, no 27, p. 4274-4281Article in journal (Refereed)
    Abstract [en]

    Noninvasive tracking of biomaterials is vital for determining the fate and degradation of an implant in vivo, and to show its role in tissue regeneration. Current biomaterials have no inherent capacity to enable tracing but require labeling with, for example, fluorescent dyes, or nanoparticles. Here a novel biocompatible fully conjugated electrospun scaffold is described, based on a semiconducting luminescent polymer that can be visualized in situ after implantation using fluorescence imaging. The polymer, poly [2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt -thiophene-2,5-diyl] (TQ1), is electrospun to form a fibrous mat. The fibers display fluorescence emission in the near-infrared region with lifetimes in the sub-nanosecond range, optimal for in situ imaging. The material shows no cytotoxic behaviors for embryonic chicken cardiomyocytes and mouse myoblasts, and cells migrate onto the TQ1 fibers even in the presence of a collagen substrate. Subcutaneous implantations of the material in rats show incorporation of the TQ1 fibers within the tissue, with limited inflammation and a preponderance of small capillaries around the fibers. The fluorescent properties of the TQ1 fibers are fully retained for up to 90 d following implantation and they can be clearly visualized in tissue using fluorescence and lifetime imaging, thus making it both a pro-angiogenic and traceable biomaterial.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf