liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 41 av 41
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Berglund, Martina
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Logistik- och kvalitetsutveckling. Linköpings universitet, Tekniska fakulteten.
    Andersson, Torbjörn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska fakulteten.
    Hedbrant, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska fakulteten.
    Pavlasevic, Vanja
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Understanding the user beyond ‘common sense’ – teaching Product Ergonomics to design engineering students2015Ingår i: Proceedings 19th Triennial Congress of the IEA, International Ergonomics Association , 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Multidisciplinary frameworks are needed to develop products that fit the human. Ergonomics is a multifaceted field that encompasses physical, cognitive and organizational aspects, and it is therefore a suitable subject to be taught to design engineering students.

    The objective of this paper was to describe and reflect upon how a systems perspective on Ergonomics is developed and conveyed in a course in Product Ergonomics to engineering students at the Design and Product Development (DPD) programme at Linköping University, Sweden. The paper is based on the authors’ experiences from teaching the course in Product Ergonomicsas well ason 52 students’ written reflections about their view on Ergonomics before and after taking the course.

    Means and ideas for teaching Ergonomics with a systems perspective included organizing a theoretical introduction into weekly themes and thereafter integrating and applying these themes in a product concept project under supervision of a multidisciplinary teacher team.

    The paper also reflects on how the systems perspective of Ergonomics is planned for and realized in the intended, implemented and attained curriculum.

  • 2.
    Berglund, Martina
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Logistik- och kvalitetsutveckling. Linköpings universitet, Tekniska fakulteten.
    Pavlasevic, Vanja
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska fakulteten.
    Andersson, Torbjörn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska fakulteten.
    Hedbrant, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Theme-based assessment of education in design and product development2014Ingår i: Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya, 2014Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    One fundamental challenge in choosing an examination form to assess student achievements is to find an examination which, both encourages students to continuously elaborate the course content and constitutes a learning process itself. The objective of this paper is to share and reflect on the development and implementation of a new theme-based examination in a six credit course in Product Ergonomics given in the engineering programme Design and Product Development at Linköping University, Sweden. The course runs during four months and has two parts: one theoretical and one applied. The former focuses on theoretical ergonomic topics, models and methods while the latter is a project aiming at consolidating the students’ understanding of the theory by implementing the knowledge in a product development case. To encourage the students to adapt a deep learning approach, the traditional written mid-term exam for the theoretical part was abandoned and another concept developed. In the new concept, the theoretical part was split onto six weekly themes. Each theme was introduced at the beginning of the week by high-lighting main theories and models followed by a group-work assignment to be elaborated on by the students during the week. The theme was examined at the end of the week through a short written exam and a seminar to discuss and reflect upon the theme. From a student perspective, the positive outcome of the theme-based examination was peer learning and a more active learning style. The students appreciated the theme-based structure of the course. Occasionally, some students commented that weekly examinations could be perceived as stressful. The teachers perceived the students to be more acquainted with ergonomics theory and methods which increased the quality of the course project. The reported theme-based assessment is one example of implementing among others the CDIO syllabus parts 2.2 and 3.1and CDIO standards 8 and 11.

  • 3.
    Gade, Jan-Lucas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Thore, Carl-Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    An in vivo parameter identification method for arteries: numerical validation for the human abdominal aorta2019Ingår i: Computer Methods in Biomechanics and Biomedical Engineering, ISSN 1025-5842, E-ISSN 1476-8259, s. 426-441Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method for identifying mechanical properties of arterial tissue in vivo is proposed in this paper and it is numerically validated for the human abdominal aorta. Supplied with pressure-radius data, the method determines six parameters representing relevant mechanical properties of an artery. In order to validate the method, 22 finite element arteries are created using published data for the human abdominal aorta. With these in silico abdominal aortas, which serve as mock experiments with exactly known material properties and boundary conditions, pressure-radius data sets are generated and the mechanical properties are identified using the proposed parameter identification method. By comparing the identified and pre-defined parameters, the method is quantitatively validated. For healthy abdominal aortas, the parameters show good agreement for the material constant associated with elastin and the radius of the stress-free state over a large range of values. Slightly larger discrepancies occur for the material constants associated with collagen, and the largest relative difference is obtained for the in situ axial prestretch. For pathological abdominal aortas incorrect parameters are identified, but the identification method reveals the presence of diseased aortas. The numerical validation indicates that the proposed parameter identification method is able to identify adequate parameters for healthy abdominal aortas and reveals pathological aortas from in vivo-like data.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Gade, Jan-Lucas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Thore, Carl-Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Sonesson, Björn
    Skane Univ Hosp, Sweden.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    In vivo parameter identification in arteries considering multiple levels of smooth muscle activity2021Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 20, nr 4, s. 1547-1559Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper an existing in vivo parameter identification method for arteries is extended to account for smooth muscle activity. Within this method a continuum-mechanical model, whose parameters relate to the mechanical properties of the artery, is fit to clinical data by solving a minimization problem. Including smooth muscle activity in the model increases the number of parameters. This may lead to overparameterization, implying that several parameter combinations solve the minimization problem equally well and it is therefore not possible to determine which set of parameters represents the mechanical properties of the artery best. To prevent overparameterization the model is fit to clinical data measured at different levels of smooth muscle activity. Three conditions are considered for the human abdominal aorta: basal during rest; constricted, induced by lower-body negative pressure; and dilated, induced by physical exercise. By fitting the model to these three arterial conditions simultaneously a unique set of model parameters is identified and the model prediction agrees well with the clinical data.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Gade, Jan-Lucas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Thore, Carl-Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Identification of mechanical properties of arteries with certification of global optimality2022Ingår i: Journal of Global Optimization, ISSN 0925-5001, E-ISSN 1573-2916, Vol. 82, nr 1, s. 195-217Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, we consider identification of parameters in a non-linear continuum-mechanical model of arteries by fitting the models response to clinical data. The fitting of the model is formulated as a constrained non-linear, non-convex least-squares minimization problem. The model parameters are directly related to the underlying physiology of arteries, and correctly identified they can be of great clinical value. The non-convexity of the minimization problem implies that incorrect parameter values, corresponding to local minima or stationary points may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound algorithm to identify the parameters to global optimality. The algorithm is tested on three clinical data sets, in each case using four increasingly larger regions around a candidate global solution in the parameter space. In all cases, the candidate global solution is found already in the initialization phase when solving the original non-convex minimization problem from multiple starting points, and the remaining time is spent on increasing the lower bound on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall procedure is in general very time-consuming.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Holmberg, Joakim
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Roser, Alexandra
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Roca, Pablo Rodriguez
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten. Technical University of Madrid, Spain.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Proposing an evolution law for the contractile element in musculoskeletal modeling2019Konferensbidrag (Refereegranskat)
  • 7.
    Holmberg, Joakim
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Roser, Alexandra
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    A note on the influence of tendon speed in musculoskeletal inverse dynamics2021Konferensbidrag (Refereegranskat)
  • 8.
    Holmberg, Joakim
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Xu, Jinghao
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Wezenberg, Daphne
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Schilcher, Jörg
    Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Ortopedkliniken i Linköping. Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi.
    Biomechanical study on the acetabular cup stability using different screw fixations2023Konferensbidrag (Refereegranskat)
  • 9.
    Karlsson, Jerker
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Carlhäll, Carl-Johan
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    Länne, Toste
    Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärtcentrum, Thorax-kärlkliniken i Östergötland.
    Engvall, Jan
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    Abdominal Aortic Wall Cross-coupled Stiffness Could Potentially Contribute to Aortic Length Remodeling2022Ingår i: Artery Research, ISSN 1872-9312, Vol. 28, s. 113-127Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Wall stiffness of the abdominal aorta is an important factor in the cardiovascular risk assessment. We investigated abdominal aortic wall stiffness divided in direct and cross‑coupled stiffness components with respect to sex and age.Methods: Thirty healthy adult males (n = 15) and females were recruited and divided into three age groups: young, middle aged and elderly. Pulsatile diameter changes were determined noninvasively by an echo‑tracking system, and intra‑aortic pressure was measured simultaneously. A mechanical model was used to compute stress and stiffness in circumferential and longitudinal directions.Results: Circumferential stretch had a higher impact on longitudinal wall stress than longitudinal stretch had on circumferential wall stress. Furthermore, there were an age‑related and sex‑independent increase in circumferential and longitudinal direct and cross‑coupled stiffnesses and a decrease in circumferential and longitudinal stretch of the abdominal aortic wall. For the young group, females had a stiffer wall compared to males, while the male aortic wall grew stiffer with age at a higher rate, reaching a similar level to that of the females in the elderly group.Conclusion: Temporal changes in aortic stiffness suggest an age‑related change in wall constituents that is expressed in terms of circumferential remodeling impacting longitudinal stress. These mechanisms may be active in the development of aortic tortuosity. We observed an age‑dependent increase in circumferential and longitudinal stiffnesses as well as decrease in stretch. A possible mechanism related to the observed changes could act via chemi‑cal alterations of wall constituents and changes in the physical distribution of fibers. Furthermore, modeling of force distribution in the wall of the human abdominal aorta may contribute to a better understanding of elastin–collagen interactions during remodeling of the aortic wall.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Karlsson, Jerker
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Carlhäll, Carl-Johan
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    Länne, Toste
    Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärtcentrum, Thorax-kärlkliniken i Östergötland. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Engvall, Jan
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Hjärtcentrum, Fysiologiska kliniken US.
    An in vivo study of isotropic and anisotropic wall stress in a hyperelastic holzapfel-gasser-ogden model in the human abdominal aorta: Effects of age and sex2023Ingår i: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 14, artikel-id 1128131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Wall stress of the abdominal aorta (AA) appears to be an important factor in the assessment of risk for rupture based on the relationship between blood pressure and aortic diameter. We therefore investigated peak wall stress as well as isotropic and anisotropic wall stress of AA.Methods: Thirty healthy adults (male = 15) were included. Pulsatile diameter changes were determined non-invasively by an echo-tracking system, and intra-aortic pressure was measured simultaneously. A computer based mechanical model was used to compute the isotropic and anisotropic components of circumferential and longitudinal stresses.Results: Elderly males had higher total wall stress and a higher isotropic stress component in the circumferential direction and higher total longitudinal wall stress than elderly females. The isotropic component increased with age in males but not in females, whereas the anisotropic component decreased with age in both sexes.Conclusion: We found that isotropic and anisotropic properties of the abdominal aortic wall differ between young and elderly participants and between the sexes. A possible explanation could relate to chemical alterations (e.g., due to sex hormones) and changes over time in the physical distribution of fibers. Modeling of wall stress components of the human AA may contribute to a better understanding of elastin-collagen interactions during remodeling of the aortic wall.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Klarbring, Anders
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Olsson, Tobias
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Stålhand, Jonas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Residual Stress Fields in Soft Tissues2004Ingår i: 21st International Congress of Theoretical and Applied Mechanics,2004, 2004, s. 20-20Konferensbidrag (Refereegranskat)
  • 12.
    Klarbring, Anders
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Olsson, Tobias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Theory of Residual Stresses with Application to an Arterial Geometry2007Ingår i: Archives of Mechanics, ISSN 0373-2029, Vol. 59, nr 4-5, s. 341-364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a theory of residual stresses, with applications to biomechanics, especially to arteries. For a hyperelastic material, we use an initial local deformation tensor K as a descriptor of residual strain. This tensor, in general, is not the gradient of a global deformation, and a stress-free reference configuration, denoted B¯, therefore, becomes incompatible. Any compatible reference configuration B0 will, in general, be residually stressed. However, when a certain curvature tensor vanishes, there actually exists a compatible and stress-free configuration, and we show that the traditional treatment of residual stresses in arteries, using the opening–angle method, relates to such a situation.

    Boundary value problems of nonlinear elasticity are preferably formulated on a fixed integration domain. For residually stressed bodies, three such formulations naturally appear: (i) a formulation relating to B0 with a non-Euclidean metric structure; (ii) a formulation relating to B0 with a Euclidean metric structure; and (iii) a formulation relating to the incompatible configuration B¯. We state these formulations, show that (i) and (ii) coincide in the incompressible case, and that an extra term appears in a formulation on B¯, due to the incompatibility.

  • 13.
    Lindström, Stefan
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Klarbring, Anders
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Modeling of the mechanobiological adaptation in muscular arteries2017Ingår i: European journal of mechanics. A, Solids, ISSN 0997-7538, E-ISSN 1873-7285, Vol. 64, s. 165-177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The growth and remodeling of arteries, as controlled by the local stress state and the sensory input from the endothelial cells of the artery wall, is given a novel theoretical framework incorporating the active behavior of vascular smooth muscle. We show that local sensory input maps uniquely to the ratio between a target arterial wall cross-section area corresponding to homeostatic conditions and the current arterial wall area. A growth law is formulated by taking the production rates of individual constituents of the arterial wall to be functions of this target-to-current wall area ratio. We find that a minimum active stress response of vascular smooth muscle is necessary to achieve stable adaptation of the artery wall to dynamic flow conditions. With a sufficient active stress alteration in response to stretch, stable growth toward a homeostatic state can be observed for finite step changes or ramp changes in the transmural pressure or the flow rate. (C) 2017 Elsevier Masson SAS. All rights reserved.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Lunze, Katrin
    et al.
    Department of Medical Information Technology, RWTH Aachen.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Leonhardt, Sabine
    Department of Medical Information Technology, RWTH Aachen.
    Modeling of stretch-activated sarcolemmal channels in smooth muscle cells2009Ingår i: World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany: Vol. 25/4 Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics / [ed] Dössel, Olaf; Schlegel, Wolfgang C., Springer Berlin/Heidelberg, 2009, s. 740-743Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper concerns the electrochemical modeling of vascular smooth muscle cells. The aim is to describe the influence of cell stretch on the intracelluar calcium concentration. A state-of-the-art cell model is extended by a stretch-activated sarcolemmal channel. Two representations for this channel are developed which describe several electrical and chemical cell membrane properties. The unknown parameters of the new channels are identified by comparing the simulation results with experimental data. The extended cell model shows a typical transient behavior for stretch stimulation. As the most important characteristic it reflects the generation of action potentials induced by cell elongation.

  • 15.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Högskolan i Borås.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Textile actuators for wearable devices2017Konferensbidrag (Övrigt vetenskapligt)
  • 16.
    Maziz, Ali
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Concas, Alexandre
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Khaldi, Alexandre
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Swedish School of Textiles (THS), SmartTextiles, University of Borås, 50190 Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Knitting and weaving artificial muscles2017Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 3, nr 1, artikel-id e1600327Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind’s oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weaving and knitting, with tunable force and strain. These textile actuators were produced from cellulose yarns assembled into fabrics and coated with conducting polymers using a metal-free deposition. To increase the output force, we assembled yarns in parallel by weaving. The force scaled linearly with the number of yarns in the woven fabric. To amplify the strain, we knitted a stretchable fabric, exhibiting a 53-fold increase in strain. In addition, the textile construction added mechanical stability to the actuators. Textile processing permits scalable and rational production of wearable artificial muscles, and enables novel ways to design assistive devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Asadi, Milad
    Univ Boras, Sweden.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Univ Boras, Sweden.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Effect of Core Yarn on Linear Actuation of Electroactive Polymer Coated Yarn Actuators2023Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, nr 18, artikel-id 2300460Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smart textiles combine the features of conventional textiles with promising properties of smart materials such as electromechanically active polymers, resulting in textile actuators. Textile actuators comprise of individual yarn actuators, so understanding their electro-chemo-mechanical behavior is of great importance. Herein, this study investigates the effect of inherent structural and mechanical properties of commercial yarns, that form the core of the yarn actuators, on the linear actuation of the conducting-polymer-based yarn actuators. Commercial yarns were coated with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to make them conductive. Then polypyrrole (PPy) that provides the electromechanical actuation is electropolymerized on the yarn surface under controlled conditions. The linear actuation of the yarn actuators is investigated in aqueous electrolyte under isotonic and isometric conditions. The yarn actuators generated an isotonic strain up to 0.99% and isometric force of 95 mN. The isometric strain achieved in this work is more than tenfold and threefold greater than the previously reported yarn actuators. The isometric actuation force shows an increase of nearly 11-fold over our previous results. Finally, a qualitative mechanical model is introduced to describe the actuation behavior of yarn actuators. The strain and force created by the yarn actuators make them promising candidates for wearable actuator technologies.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Asadi, Milad
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Yarn actuators powered by electroactive polymers for wearables2023Konferensbidrag (Övrigt vetenskapligt)
  • 19.
    Olsson, Tobias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Modeling initial strain distribution in soft tissues with application to arteries2006Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 5, nr 1, s. 27-38Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A general theory for computing and identifying the stress field in a residually stressed tissue is presented in this paper. The theory is based on the assumption that a stress free state is obtained by letting each point deform independently of its adjacent points. This local unloading represents an initial strain, and can be described by a tangent map. When experimental data is at hand in a specific situation, the initial strain field may be identified by stating a nonlinear minimization problem where this data is fitted to its corresponding model response. To illustrate the potential of such a method for identifying initial strain fields, the application to an in vivo pressure–radius measurement for a human aorta is presented. The result shows that the initial strain is inconsistent with the strain obtained with the opening-angle-method. This indicates that the opening-angle-method has a too restrictive residual strain parameterization, in this case.

  • 20.
    Persson, Nils-Krister
    et al.
    University of Borås.
    Maziz, Ali
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Öberg, Ingrid
    University of Borås.
    Christiansson, Isabella
    University of Borås.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Next generation Smart Textiles - morphing and actuating devices2017Konferensbidrag (Refereegranskat)
  • 21.
    Sharifimajd, Babak
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    A continuum model for excitation–contraction of smooth muscle under finite deformations2014Ingår i: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 355, s. 1-9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main focus in most of continuum based muscle models is the muscle contraction dynamics while other physiological processes governing muscle contraction, e.g., the cell membrane excitation and the activation, are ignored. These latter processes are essential to initiate contraction and to determine the amount of generated force, and by excluding them, the developed model cannot replicate the true behavior of the muscle in question. The aim of this study is to establish a thermodynamically and physiologically consistent framework which allows to model smooth muscle contraction by including cell membrane excitability and kinetics of myosin phosphorylation, along with dynamics of smooth muscle contraction. The model accounts for these processes through a set of coupled dissipative constitutive equations derived by applying the first principles. To show the performance of the derived model, it is evaluated for two different cases: a mechanochemical study of pig taenia coli cells where the excitation process is excluded, and a complete excitation–contraction process of rat myometrium. The results show that the model is able to replicate important aspects of the smooth muscle EC process acceptably.

  • 22.
    Sharifimajd, Babak
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    A continuum model for skeletal muscle contraction at homogeneous finite deformations2013Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 12, nr 5, s. 965-973Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The contractile force in skeletal muscle models is commonly postulated to be the isometric force multiplied by a set of experimentally motivated functions which account for the muscle’s active properties. Although both flexible and simple, this approach does not automatically guarantee a thermodynamically consistent behavior. In contrast, the continuum mechanical model proposed herein is derived from fundamental principles in mechanics and guarantees a dissipative behavior. Further, the contractile force is associated with a friction clutch which provides a simple and well-defined macroscopic model for cycling cross-bridges. To show the performance of the model, it is specialized to standard experiments for rabbit tibialis anterior muscle. The results show that the model is able to capture important characteristics of skeletal muscle.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Sharifimajd, Babak
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Thore, Carl-Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Simulating uterine contraction by using an electro-chemo-mechanical model2016Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 15, nr 3, s. 497-510Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions. In this study, an electro-chemo-mechanical model to replicate the excitation, activation, and contraction of uterine smooth muscle cells is developed. The presented modeling strategy enables efficient integration of knowledge about physiological processes at the cellular level to the organ level. The model is implemented in a three-dimensional finite element setting to simulate uterus contraction during labor in response to electrical discharges generated by pacemaker cells and propagated within the myometrium via gap junctions. Important clinical factors, such as uterine electrical activity and intrauterine pressure, are predicted using this simulation. The predictions are in agreement with clinically measured data reported in the literature. A parameter study is also carried out to investigate the impact of physiologically related parameters on the uterine contractility.

  • 24.
    Sharifimajd, Babak
    et al.
    Institute of Solid Mechanics, Department of Mechanical Engineering, Braunschweig University of Technology, Braunschweig, Germany.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Identification of the mechanical parameters for the human uterus in vivo using intrauterine pressure measurements2017Ingår i: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, Vol. 33, nr 1, s. 1-11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There are limited experimental data to characterize the mechanical response of human myometrium. A method is presented in this work to identify mechanical parameters describing the active response of human myometrium from the in vivo intrauterine pressure measurements. A finite element model is developed to compute the intrauterine pressure during labor in response to an increase in the intracellular calcium ion concentration within myometrial smooth muscle cells. The finite element model provides the opportunity to tune mechanical parameters in order to fit the computed intrauterine pressure to in vivo measurements. Since the model is computationally expensive, a cheaper meta-model is generated to approximate the model response. By fitting the meta-model response to the in vivo measurements, the parameters used to determine the active response of human myometrial smooth muscle are identified.

  • 25.
    Stålhand , Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Determination of human arterial wall parameters from clinical data2009Ingår i: BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, ISSN 1617-7959 , Vol. 8, nr 2, s. 141-148Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study suggests a method to compute the material parameters for arteries in vivo from clinically registered pressure-radius signals. The artery is modelled as a hyperelastic, incompressible, thin-walled cylinder and the membrane stresses are computed using a strain energy. The material parameters are determined in a minimisation process by tuning the membrane stress to the stress obtained by enforcing global equilibrium. In addition to the mechanical model, the study also suggests a preconditioning of the pressure-radius signal. The preconditioning computes an average pressure-radius cycle from all consecutive cycles in the registration and removes, or reduces, undesirable disturbances. The effect is a robust parameter identification that gives a unique solution. The proposed method is tested on clinical data from three human abdominal aortas and the results show that the material parameters from the proposed method do not differ significantly (p < 0.01) from the corresponding parameters obtained by averaging the result from consecutive cycles.

  • 26.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Arterial mechanics: noninvasive identification of constitutive parameters and residual stress2005Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    This thesis concerns the mechanical modelling of arteries, and particularly a method to identify parameters describing the mechanical properties using only clinically obtainable in vivo measurements. The artery is modelled as a fibre reinforced, incompressible, thick-walled cylinder subjected to large deformations and a residual stress field. The residual stress field is parameterized using two methods: the classical opening angle method and the virtual configuration method. In the former method, the parameterization is obtained from the geometry of the cylindrical sector that an artery springs open into after a radial cut through the wall, while the latter method is based on a more general approach where the artery is relieved of stress by a local tangent map.

    The model parameters are identified in a minimization problem. This is a well known technique for parameter identification; however, a simultaneous identification of the material and the residual stretch parameters has not been done for soft tissues before. Two particular diffculties are encountered in the minimization: first, the non convexity of the objective function, and second, the amount of information available in the measured pressure radius response is limited and the solution must be checked for over parameterization. The thesis studies these aspects and tries to relieve some of the problems by introducing physical or physiologically motivated constraints on the minimization.

    The results presented in the four papers show that the method is feasible. It is also shown that the opening angle method can fail to give a true parameterization of the residual stress and that the virtual configuration method is preferable.

    Delarbeten
    1. Towards in vivo aorta material identification and stress estimation
    Öppna denna publikation i ny flik eller fönster >>Towards in vivo aorta material identification and stress estimation
    2004 (Engelska)Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 2, nr 3, s. 169-186Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    This paper addresses the problem of constructing a mechanical model for the abdominal aorta and calibrating its parameters to in vivo measurable data. The aorta is modeled as a pseudoelastic, thick-walled, orthotropic, residually stressed cylindrical tube, subjected to an internal pressure. The model parameters are determined by stating a minimization problem for the model pressure and computing the optimal solution by a minimization algorithm. The data used in this study is in vivo pressure–diameter data for the abdominal aorta of a 24-year-old man. The results show that the axial, circumferential and radial stresses have magnitudes in the span 0 to 180 kPa. Furthermore, the results show that it is possible to determine model parameters directly from in vivo measurable data. In particular, the parameters describing the residual stress distribution can be obtained without interventional procedures.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-22567 (URN)10.1007/s10237-003-0038-z (DOI)1837 (Lokalt ID)1837 (Arkivnummer)1837 (OAI)
    Tillgänglig från: 2009-10-07 Skapad: 2009-10-07 Senast uppdaterad: 2018-01-03
    2. Aorta in vivo parameter identification using an axial force constraint
    Öppna denna publikation i ny flik eller fönster >>Aorta in vivo parameter identification using an axial force constraint
    2005 (Engelska)Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 3, nr 4, s. 191-199Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    It was shown in a previous study by Stålhand et al. (2004) that both material and residual strain parameters for an artery can be identified noninvasively from an in vivo clinical pressure–diameter measurement. The only constraints placed on the model parameters in this previous study was a set of simple box constraints. More advanced constraints can also be utilized, however. These constraints restrict the model parameters implicitly by demanding the state of the artery to behave in a specified way. It has been observed in vitro that the axial force is nearly invariant to the pressure at the physiological operation point. In this paper, we study the possibility to include this behaviour as a constraint in the parameter optimization. The method is tested on an in vivo obtained pressure–diameter cycle for a 24-year-old human. Presented results show that the constrained parameter identification procedure proposed here can be used to obtain good results, and we believe that it may be applied to account for other observed behaviours as well.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-30656 (URN)10.1007/s10237-004-0057-4 (DOI)16253 (Lokalt ID)16253 (Arkivnummer)16253 (OAI)
    Tillgänglig från: 2009-10-09 Skapad: 2009-10-09 Senast uppdaterad: 2018-01-03
    3. Modeling initial strain distribution in soft tissues with application to arteries
    Öppna denna publikation i ny flik eller fönster >>Modeling initial strain distribution in soft tissues with application to arteries
    2006 (Engelska)Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 5, nr 1, s. 27-38Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A general theory for computing and identifying the stress field in a residually stressed tissue is presented in this paper. The theory is based on the assumption that a stress free state is obtained by letting each point deform independently of its adjacent points. This local unloading represents an initial strain, and can be described by a tangent map. When experimental data is at hand in a specific situation, the initial strain field may be identified by stating a nonlinear minimization problem where this data is fitted to its corresponding model response. To illustrate the potential of such a method for identifying initial strain fields, the application to an in vivo pressure–radius measurement for a human aorta is presented. The result shows that the initial strain is inconsistent with the strain obtained with the opening-angle-method. This indicates that the opening-angle-method has a too restrictive residual strain parameterization, in this case.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-14331 (URN)10.1007/s10237-005-0008-8 (DOI)
    Tillgänglig från: 2007-03-16 Skapad: 2007-03-16 Senast uppdaterad: 2018-01-03
    4. In vivo parameter identification in arteries including smooth muscle contraction
    Öppna denna publikation i ny flik eller fönster >>In vivo parameter identification in arteries including smooth muscle contraction
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    This paper presents an approach for including the active properties and a general residual stress distribution in the mechanical modelling of arteries by using a constrained mixture theory and local tangent maps. The model is used to identify passive and active properties, and a general residual stress distribution from in vivo measurements on a human femoral artery by solving a minimization problem. The results show that the active stress developed in the vascular smooth muscles tends to make the transmural stretch and stress distribution more uniform then for the passive response. We believe this indicates that it is important to account for active properties when modelling muscular arteries.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-85898 (URN)
    Tillgänglig från: 2012-12-03 Skapad: 2012-12-03 Senast uppdaterad: 2018-01-03
  • 27.
    Stålhand, Jonas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    In-vivo Aorta Parameter Identification Using a Relaxed Force Constraint2004Ingår i: Symposium on Mechanics of Biological Tissue,2004, 2004Konferensbidrag (Övrigt vetenskapligt)
  • 28.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Modelling the passive mechanical properties of arteries2003Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    This thesis concerns the modelling of passive mechanical properties of arteries. An artery is characterised by large nonlinear deformation, anisotropy and incompressibility. In addition, it is subjected to a residual stress when the applied load is removed. All this combined makes it complex to derive appropriate mechanical models. Even though, models of this kind are highly desirable since they could help to diagnose diseases and indicate if there is a need for surgical intervention.

    The mechanical model presented in this thesis satisfies most of the important mechanical properties of a passive artery. It is a nonlinear, orthotropic and incompressible model, which accounts for the residual stress by defining a hypothetical, stress free reference state. The model is able to give a good fit between the model pressure and the measured pressure, while having a relatively small number of unknown model parameters.

    The model is used for in-vivo parameter identification and stress estimation on an abdominal aorta from a young healthy male. The measured data is a limited pressureradius set, typically of the type obtained in clinical practice. Three material parameters and four parameters associated with the residual stress are identified by a minimization process. The results shows that specific material parameters, and in particular the residual stress, can be obtained for an individual, using in-vivo measurable data only.

  • 29.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Holzapfel, Gerhard A.
    Graz University of Technology, Austria.
    Length adaptation of smooth muscle contractile filaments in response to sustained activation2016Ingår i: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 397, s. 13-21Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Aorta in vivo parameter identification using an axial force constraint2005Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 3, nr 4, s. 191-199Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It was shown in a previous study by Stålhand et al. (2004) that both material and residual strain parameters for an artery can be identified noninvasively from an in vivo clinical pressure–diameter measurement. The only constraints placed on the model parameters in this previous study was a set of simple box constraints. More advanced constraints can also be utilized, however. These constraints restrict the model parameters implicitly by demanding the state of the artery to behave in a specified way. It has been observed in vitro that the axial force is nearly invariant to the pressure at the physiological operation point. In this paper, we study the possibility to include this behaviour as a constraint in the parameter optimization. The method is tested on an in vivo obtained pressure–diameter cycle for a 24-year-old human. Presented results show that the constrained parameter identification procedure proposed here can be used to obtain good results, and we believe that it may be applied to account for other observed behaviours as well.

  • 31.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Klarbring, Anders
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    In vivo parameter identification in arteries including smooth muscle contraction2005Rapport (Övrigt vetenskapligt)
  • 32.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    In vivo parameter identification in arteries including smooth muscle contractionManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    This paper presents an approach for including the active properties and a general residual stress distribution in the mechanical modelling of arteries by using a constrained mixture theory and local tangent maps. The model is used to identify passive and active properties, and a general residual stress distribution from in vivo measurements on a human femoral artery by solving a minimization problem. The results show that the active stress developed in the vascular smooth muscles tends to make the transmural stretch and stress distribution more uniform then for the passive response. We believe this indicates that it is important to account for active properties when modelling muscular arteries.

  • 33.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Klarbring, Anders
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Mekanik.
    Parameter Identification i Arteries Using Constraints2006Ingår i: IUTAM Symposium on Mechanics of Biological Tissue,2004, Heidelberg: Springer Verlag , 2006, s. 295-Konferensbidrag (Refereegranskat)
  • 34.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Holzapfel, G.A.
    Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden, Institute for Biomechanics, Centre for Biomedical Engineering, Graz University of Technology, Austria.
    Smooth muscle contraction: Mechanochemical formulation for homogeneous finite strains2008Ingår i: Progress in Biophysics and Molecular Biology, ISSN 0079-6107, E-ISSN 1873-1732, Vol. 96, nr 1-3, s. 465-481Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness, (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2 +-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2 +-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle. © 2007 Elsevier Ltd. All rights reserved.

  • 35.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Holzapfel, Gerhard A
    Graz University of Technology, Institute of Biomechanics, Center of Biomedical Engineering / Royal Institute of Technology, Department of Solid Mechanics, School of Engineering Sciences.
    A mechanochemical 3D continuum model for smooth muscle contraction under finite strains2011Ingår i: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 268, nr 1, s. 120-130Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a modelling framework in which the mechanochemical properties of smooth muscle cells may be studied. The activation of smooth muscles is considered in a three-dimensional continuum model which is key to realistically capture the function of hollow organs such as blood vessels. On the basis of a general thermodynamical framework the mechanical and chemical phases are specialized in order to quantify the coupled mechanochemical process. A free-energy function is proposed as the sum of a mechanical energy stored in the passive tissue, a coupling between the mechanical and chemical kinetics and an energy related purely to the chemical kinetics and the calcium ion concentration. For the chemical phase it is shown that the cross-bridge model of Hai and Murphy [1988. Am. J. Physiol. Cell Physiol. 254, C99–C106] is included in the developed evolution law as a special case. In order to show the specific features and the potential of the proposed continuum model a uniaxial extension test of a tissue strip is analysed in detail and the related kinematics and stress–stretch relations are derived. Parameter studies point to coupling phenomena; in particular the tissue response is analysed in terms of the calcium ion level. The model for smooth muscle contraction may significantly contribute to current modelling efforts of smooth muscle tissue responses.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Holzapfel, Gerhard A.
    Graz University of Technology, Austria and Royal Institute of Technology, Stockholm.
    Modeling of Smooth Muscle Activation2012Ingår i: Computer models in biomechanics :: from nano to macro / [ed] Gerhard A. Holzapfel, Ellen Kuhl ed, Heidelberg: Springer Berlin/Heidelberg, 2012, s. 77-89Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

       This book contains a collection of papers that were presented at the IUTAM Symposiumon "Computer Models in Biomechanics: From Nano to Macro" held at Stanford University, California, USA, from August 29 to September 2, 2011.It contains state-of-the-art papers on:- Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates- Muscle Mechanics: modeling approaches for Ca2+-regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-br

  • 37.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Klarbring, Anders
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Karlsson, Matts
    Linköpings universitet, Institutionen för medicinsk teknik. Linköpings universitet, Tekniska högskolan.
    Towards in vivo aorta material identification and stress estimation2004Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 2, nr 3, s. 169-186Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper addresses the problem of constructing a mechanical model for the abdominal aorta and calibrating its parameters to in vivo measurable data. The aorta is modeled as a pseudoelastic, thick-walled, orthotropic, residually stressed cylindrical tube, subjected to an internal pressure. The model parameters are determined by stating a minimization problem for the model pressure and computing the optimal solution by a minimization algorithm. The data used in this study is in vivo pressure–diameter data for the abdominal aorta of a 24-year-old man. The results show that the axial, circumferential and radial stresses have magnitudes in the span 0 to 180 kPa. Furthermore, the results show that it is possible to determine model parameters directly from in vivo measurable data. In particular, the parameters describing the residual stress distribution can be obtained without interventional procedures.

  • 38.
    Stålhand, Jonas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    McMeeking, Robert M.
    Department of Mechanical Engineering & Materials Department, University of California Santa Barbara, CA 93106, USA / School of Engineering, University of Aberdeen, Kings College, Aberdeen, AB24 3UE, UK.
    Holzapfel, Gerhard A.
    Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16-II, 8010 Graz, Austria / Norwegian University of Science and Technology (NTNU), Faculty of Engineering Science and Technology, 7491 Trondheim, Norway.
    On the Thermodynamics of Smooth Muscle Contraction2016Ingår i: Journal of the mechanics and physics of solids, ISSN 0022-5096, E-ISSN 1873-4782, Vol. 94, s. 490-503Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling is derived.

  • 39.
    Thore, Carl-Johan
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Karlsson, Matts
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska högskolan.
    Toward a noninvasive subject-specific estimation of abdominal aortic pressure2008Ingår i: American Journal of Physiology. Heart and Circulatory Physiology, ISSN 0363-6135, E-ISSN 1522-1539, Vol. 295, nr 3Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method for estimation of central arterial pressure based on linear one-dimensional wave propagation theory is presented in this paper. The equations are applied to a distributed model of the arterial tree, truncated by three-element windkessels. To reflect individual differences in the properties of the arterial trees, we pose a minimization problem from which individual parameters are identified. The idea is to take a measured waveform in a peripheral artery and use it as input to the model. The model subsequently predicts the corresponding waveform in another peripheral artery in which a measurement has also been made, and the arterial tree model is then calibrated in such a way that the computed waveform matches its measured counterpart. For the purpose of validation, invasively recorded abdominal aortic, brachial, and femoral pressures in nine healthy subjects are used. The results show that the proposed method estimates the abdominal aortic pressure wave with good accuracy. The root mean square error (RMSE) of the estimated waveforms was 1.61 ± 0.73 mmHg, whereas the errors in systolic and pulse pressure were 2.32 ± 1.74 and 3.73 ± 2.04 mmHg, respectively. These results are compared with another recently proposed method based on a signal processing technique, and it is shown that our method yields a significantly (P < 0.01) lower RMSE. With more extensive validation, the method may eventually be used in clinical practice to provide detailed, almost individual, specific information as a valuable basis for decision making. Copyright © 2008 the American Physiological Society.

  • 40.
    Åstrand, Håkan
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Fysiologi. Linköpings universitet, Hälsouniversitetet.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik. Linköpings universitet, Tekniska högskolan.
    Karlsson, Jerker
    Linköpings universitet, Institutionen för medicin och hälsa, Fysiologi. Linköpings universitet, Hälsouniversitetet.
    Karlsson, Matts
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska högskolan.
    Sonesson, B.
    Malmö University Hospital, Sweden.
    Länne, Toste
    Linköpings universitet, Institutionen för medicin och hälsa, Fysiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Hjärt- och Medicincentrum, Thorax-kärlkliniken i Östergötland.
    In vivo estimation of the contribution of elastin and collagen on the mechanical properties in the abdominal aorta of man: effect of age and gender2011Ingår i: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 110, nr 1, s. 8750-8757Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanical properties of the aorta affect cardiac function and are related to cardiovascular morbidity/mortality. This study was designed to evaluate the isotropic (mainly elastin, elastiniso) and anisotropic (mainly collagen, collagenani) material parameters within the human aorta in vivo. Thirty healthy men and women in three different age categories (23–30, 41–54, and 67–72 yr) were included. A novel mechanical model was used to identify the mechanical properties and the strain field with aid of simultaneously recorded pressure and radius in the abdominal aorta. The magnitudes of the material parameters relating to both the stiffness of elastiniso and collagenani were in agreement with earlier in vitro studies. The load-bearing fraction attributed to collagenani oscillated from 10 to 30% between diastolic and systolic pressures during the cardiac cycle. With age, stiffness of elastiniso increased in men, despite the decrease in elastin content that has been found due to elastolysis. Furthermore, an increase in stiffness of collagenani at high physiological pressure was found. This might be due to increased glycation, as well as changed isoforms of collagen in the aortic wall with age. A marked sex difference was observed, with a much less age-related effect, both on elastiniso and collagenani stiffness in women. Possible factors of importance could be the effect of sex hormones, as well as differing collagen isoforms, between the sexes.

  • 41.
    Åstrand, Håkan
    et al.
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Fysiologi.
    Stålhand, Jonas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik.
    Karlsson, M
    Länne, Toste
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Fysiologi. Östergötlands Läns Landsting, Hjärtcentrum, Thorax-kärlkliniken.
    Wall stress of the abdominal aorta in man - Studies in vivo using ultrasound technique and continuum mechanical approach2003Ingår i: Journal of Hypertension, ISSN 0263-6352, E-ISSN 1473-5598, Vol. 21, s. S108-S108Konferensbidrag (Övrigt vetenskapligt)
1 - 41 av 41
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf