liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eriksson, Mats
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Salomonsson, Anette
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Briand, Danick
    Institute of Microtechnology, University of Neuchâtel, Neuchâtel, Switzerland.
    Åbom, Elisabeth
    Sapa Heat Transfer, Finspång, Sweden.
    The influence of the insulator surface properties on the hydrogen response of field-effect gas sensors2005In: Journal of Applied Physics, ISSN 0021-8979, Vol. 98, no 3, p. 34903-34908Article in journal (Refereed)
    Abstract [en]

    The hydrogen response of gas-sensitive field-effect devices is mainly due to trapping of atomic hydrogen on the insulator side of the metal-insulator interface of the metal-insulator-semiconductor (MIS) structure. Therefore an influence of the choice of insulator on the hydrogen response properties is expected. We have investigated this influence by producing MIS capacitors with four different insulators; SiO2, Al2O3, Si3N4, and Ta2O5. The results show that the choice of insulator influences the detection limit, the saturation concentration, and the saturation response. Furthermore, there is a strong correlation between the observed saturation response and the oxygen concentration of the insulator surface, as measured by Auger electron spectroscopy, which indicates that the trapping of hydrogen at the interface occurs at the oxygen atoms of the insulator surface. Finally, if the metal film is porous a catalytic oxidation of the insulator surface appears to be facilitated, which can increase the hydrogen response.

  • 2.
    Nakagomia, Shinji
    et al.
    Ishinomaki Senshu University.
    Wingqvist, Gunilla
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Åbom, Elisabeth
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Hydrogen sensing by NKN thin film with high dielectric constant and ferroelectric property2005In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 108, p. 490-495Article in journal (Refereed)
    Abstract [en]

    Hydrogen sensing properties of sodium potassium niobate NaxKyNbOz (NKN) thin films were studied. The NKN thin films were prepared by reactive rf magnetron sputtering. NKN is a ferroelectric material with high dielectric constant. The polarization increases in hydrogen ambient and decreases in oxygen ambient. The conductivity of the NKN film in hydrogen ambient is higher than in oxygen ambient, and these changes are reversible. The threshold voltage of the current-voltage (I-V) characteristics depends on the hydrogen concentration, and a large response of 3.3V was obtained.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf