liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Amiri, Shahnaz
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Biogas Research Center.
    Henning, Dag
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Biogas Research Center.
    Karlsson, Björn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Biogas Research Center.
    Simulation and introduction of a CHP plant in a Swedish biogas system2013Ingår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 49, nr SI, s. 242-249Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The objectives of this study are to present a model for biogas production systems to help achieve a more cost-effective system, and to analyse the conditions for connecting combined heat and power (CHP) plants to the biogas system. The European electricity market is assumed to be fully deregulated. The relation between connection of CHP. increased electricity and heat production, electricity prices, and electricity certificate trading is investigated. A cost-minimising linear programming model (MODEST) is used. MODEST has been applied to many energy systems, but this is the first time the model has been used for biogas production. The new model, which is the main result of this work, can be used for operational optimisation and evaluating economic consequences of future changes in the biogas system. The results from the case study and sensitivity analysis show that the model is reliable and can be used for strategic planning. The results show that implementation of a biogas-based CHP plant result in an electricity power production of approximately 39 GW h annually. Reduced system costs provide a profitability of 46 MSEK/year if electricity and heat prices increase by 100% and electricity certificate prices increase by 50%. CO2 emission reductions up to 32,000 ton/year can be achieved if generated electricity displaces coal-fired condensing power.

  • 2.
    Bohlin, Henrik
    et al.
    Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutionen för tema, Tema teknik och social förändring.
    Henning, Dag
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Trygg, Louise
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Energisystemanalys Ulricehamn2004Rapport (Övrigt vetenskapligt)
  • 3.
    Danestig, Maria
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Henning, Dag
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Efficient heat resource utilisation in energy systems2008Ingår i: Energy in Europe: Economics, Policy and Strategy, Filip Magnusson and Oscar W. Bengtsson (eds.) / [ed] Oscar W. Bengtsson,Filip L. Magnusson, Nova Publishers , 2008, 1, s. 315-359Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Energy constitutes the motive force of the civilisation and it determines, in a high degree, the level of economy development as a whole. Despite the increase use of different type of energy, particularly, renewable energy sources, fossil fuels will continue dominating the energy combinations in the world near future. However, oil reserves are declining and this situation would have a negative impact in the future economic development of many countries all over the world. In Europe, the import energy dependency is rising. Unless Europe can make domestic energy more competitive in the next 20 to 30 years, around 70% of the European Unions energy requirements, compared to 50% today, will be met by imported products some of them from regions threatened by insecurity. Now, the energy requirements of the different countries are so high that, for the first time in the humanity's history, there is a need to consider different types of available energy sources and their reserves to plan the economic development of the countries. At the same time, there is also a need to use these sources in the most efficient possible manner in order to sustain that development. The EU leads the world in demand management, in promoting new and renewable forms of energy. If the EU backs up a new common policy with a common voice on energy questions, Europe can lead the global search for energy solutions. However, EU must act urgently because it takes many years to bring innovation on stream in the energy sector, as well as to make productive the investments that are need to update the energy infrastructure in the region. This book provides leading-edge research on this field of study from around the globe.

  • 4.
    Danestig, Maria
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Henning, Dag
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Increased system benefit from cogeneration due to cooperation between district heating utility and industry2004Ingår i: Proceedings of the 9th international symposium on district heating and cooling, Espoo, Finland, 30-31 August., 2004, s. 97-104Konferensbidrag (Refereegranskat)
    Abstract [en]

    District heating and steam supply in the town Örnsköldsvik in northern Sweden is in focus for this study. Low temperature waste heat from pulp manufacturing in the Domsjö mill is now utilised for district heating production in heat pumps, which dominate district heating supply. Based on this traditional cooperation between the local district heating utility and the pulp industry, the parties discuss a partial outsourcing of the industrial steam supply to the utility, which may enable beneficial system solutions for both actors. The local utility must find a new location for a heating plant because a railway line is being built at the heat pump site. Planning for a new combined heat and power production (CHP) plant has started but its location is uncertain. If the plant can be situated close to the mill it can, besides district heating, produce steam, which can be supplied to adjacent industries. The municipality and its local utility are also considering investing in a waste incineration plant. But is waste incineration suitable for Örnsköldsvik and how would it interact with cogeneration?

    Alternative cases have been evaluated with the MODEST energy system optimisation model, which minimises the cost for satisfying district heating and steam demand. The most profitable solution is to invest in a CHP plant and a waste incineration plant. Considering carbon dioxide emissions, the results from applying a local or a global perspective are remarkably different. In the latter case, generated electricity is assumed to replace power from coal condensing plants elsewhere in the North-European power grid. Therefore, minimum global CO2 emissions are achieved through maximal electricity production in a CHP plant. From this viewpoint, waste incineration should not be introduced because it would obstruct cogeneration. The study is carried out within the program Sustainable municipality run by the Swedish Energy Agency.

  • 5.
    Gebremedhin, Alemayehu
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Henning, Dag
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Palm, Jenny
    Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutionen för tema, Tema teknik och social förändring.
    Energianalys Vingåker2006Rapport (Övrigt vetenskapligt)
  • 6.
    Henning, Dag
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem. Linköpings universitet, Tekniska högskolan.
    Optimisation of Local and National Energy Systems: Development and Use of the MODEST Model1999Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Energy may be supplied by a multitude of components. Computer simulation helps in finding a beneficial system design. The energy-system optimisation model MODEST has been developed, and it has been applied to municipal, regional, and national energy systems. The most favourable combinations of present and potential equipment and energy flows have been obtained.

    MODEST uses linear programming to minimise capital and operation costs. A flexible time division can reflect demand peaks and diurnal, weekly, seasonal, and long-term variations of demand, costs, capacities, etc. The optimal kinds, sizes, and occasions for investments and the best system operation are found. MODEST has been used to study energy supply and demand-side measures in 40 municipalities, three provinces, and the Swedish electricity system.

    The national power system was studied at the request of the governmental Energy Commission. A nuclear phase-out would cause a 30% cost increase for satisfying the useful energydemand that today is covered by electricity in Sweden. Cogeneration should replace some nuclear-power production, and power export would decrease. To achieve environmental sustainability, biofuel and wind power should complement hydroelectric power because naturalgas and condensing-power capacity expansion would enhance CO2 emissions significantly. Increased electricity costs would make consumers introduce more fuel switching from electricity to oil or biomass for heating. Industrial energy conservation and load management have robust profitability irrespective of nuclear-power, fossil-fuel, and carbon-dioxide restrictions. Obtained marginal costs for electricity supply may reflect electricity prices in a deregulated market and can be used as input to local studies.

    Many local electricity and district-heating utilities have assigned tasks where MODEST has been used as decision support. Introducing heat-only boilers and combined heat and power (CHP)plants can accomplish cost minimisation at low and high electricity prices, respectively. The use of oil, woodchips, etc. depends on taxes and environmental fees. A heat storage may cover demand peaks, increase the heat sink for CHP, and be charged by heat pumps that use cheap night electricity.

    MODEST has, thus, been applied to many different energy systems, and the most suitable installations and operations have been found.

  • 7.
    Henning, Dag
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    The Role of Renewable Energy for a Local Swedich Utility under Varioous Market Conditions, in Renewable Energy - Renewables: The Energy for the 21st Century2001Ingår i: World Renewable Energy CongressVI,2000, Brighton: World Renewable Energy Congress , 2001Konferensbidrag (Refereegranskat)
    Abstract [en]

      

  • 8.
    Henning, Dag
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem. Linköpings universitet, Tekniska högskolan.
    Amiri, Shahnaz
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Holmgren, Kristina
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem. Linköpings universitet, Tekniska högskolan.
    Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility2006Ingår i: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 175, nr 2, s. 1224-1247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    District heating may help reduce environmental impact and energy costs, but policy instruments and waste management may influence operations. The energy system optimisation model MODEST has been used for 50 towns, regions and a nation. Investments and operation that satisfy energy demand at minimum cost are found through linear programming. This paper describes the application of MODEST to a municipal utility, which uses several fuels and cogeneration plants. The model reflects diurnal and monthly demand fluctuations. Several studies of the Linköping utility are reviewed. These indicate that the marginal heat cost is lower in summer, a new waste or wood fired cogeneration plant is more profitable than a natural-gas-fired combined cycle, material recycling of paper and hard plastics is preferable to waste incineration from an energy-efficiency viewpoint, and considering external costs enhances wood fuel use. Here, an emission limit is used to show how fossil-fuel cogeneration displaces CO2 from coal-condensing plants. © 2005 Elsevier B.V. All rights reserved.

  • 9.
    Henning, Dag
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Danestig, Maria
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Local development possibilities for sustainable energy supply and use in Sweden2007Ingår i: In B. Frostell, Å. Danielsson, L. Hagberg, B.-O. Linnér, E. Lisberg Jensen (eds., Science for Sustainable Development - The Social Challenge with emphasis on conditions for change, Proceedings from the 2nd VHU Conference, Linköping 6-7 September, Uppsala: VHU, 2007Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Large structural changes are necessary to reduce the resource use in industrialised countries to a sustainable level. Modifications of municipalities’ normal operations can contribute to a more ecologically, economically and socially sustainable society through, for example, promotion of measures concerning energy conservation and renewable energy supply. In the Swedish Energy Agency’s Sustainable municipality programme, it is developed how spatial plans of ground use and building development can promote local renewable energy sources and efficient energy utilisation. Energy issues can be integrated in spatial planning through scenarios of future energy supply and use, which are discussed by local stakeholders. It can be shown how wall insulation, solar heating and heat recovery can reduce primary energy demand and that switching from electricity to biofuel can reduce CO2 emissions. The indicator heat load density depends on building structure and shows, for instance, preconditions for district heating, which often is a favourable heating option. If the local energy utility is involved in spatial planning, it may facilitate the introduction of temporary solutions, such as pellets boilers, to make more customers chose district heating in areas where the network is delayed. District heating systems enable efficient electricity generation in combined heat and power (CHP) plants, which can be elucidated by an optimisation model that considers economy and environment. Strategic spatial planning can promote establishment and expansion of district heating networks.

  • 10.
    Henning, Dag
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Danestig, Maria
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Holmgren, Kristina
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Gebremedhin, Alemayehu
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Modelling the impact of policy instruments on district heating operations: experiences from Sweden2006Ingår i: 10th International Symposium on District Heating and Cooling, Hanover, Germany, 2006Konferensbidrag (Refereegranskat)
    Abstract [en]

    Emission allowances aim at reducing carbon dioxide emissions in the European Union. Feed-in tariffs and green certificates increase renewable electricity generation in some countries. Undesired energy carriers, such as fossil fuels, can be taxed to decrease consumption. In Sweden, monetary policy instruments have been used for many years, which has influenced district-heating utilities’ operations and investments.

    The energy system optimisation model MODEST may help elucidating the impact of policy instruments on choices of fuels and plants. The model can minimise operation and investment costs for satisfying district heating demand, considering revenues from electricity sales and waste reception. It has been used to analyse heat and electricity production for 50 local Swedish utilities. This paper shows how some plants, systems and policy instruments have been modelled and results from some case studies. It may help analysts who face policy instruments, which probably will have a growing influence on district heating operations.

    Policy instruments should reflect external costs and induce behaviour that is beneficial from an overall viewpoint. Swedish fossil-fuel taxes hampered cogeneration during many years. Earlier, fuel input could be freely allocated to output energy forms and wood was often used for heat production and coal for electricity generation to minimise taxes. Now, lower taxes promote fossil cogeneration but green certificates make it more profitable to invest in renewable electricity generation.

    Carbon dioxide emission allowances can reduce local emissions due to districtheating and electricity production significantly at current price levels but the impact depends on allowance price. With emission trading, investment in a natural-gas-fired cogeneration plant may be beneficial for some utilities due to high electricity prices in the European electricity market, partly caused by emission allowances.

    District-heating demand can enable utilisation of resources that otherwise would be of no value. A landfill ban now increases waste incineration, which may reduce industrial waste heat utilisation and heat disposal from cogeneration plants and thereby decrease electricity production. A tax on incinerated waste may reduce the profitability of investing in waste incineration.

  • 11.
    Henning, Dag
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Hrelja, Robert
    Linköpings universitet, Institutionen för tema.
    Trygg, Louise
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Energisystemanalys Örnsköldsvik2004Rapport (Övrigt vetenskapligt)
  • 12.
    Henning, Dag
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Palm, Jenny
    Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutionen för tema, Tema teknik och social förändring.
    Energitillförsel och energihushållning i samverkan2006Rapport (Övrigt vetenskapligt)
  • 13.
    Henning, Dag
    et al.
    Optensys Energianalys, Linköping, Sweden.
    Trygg, Louise
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions2008Ingår i: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 36, nr 7, s. 2330-2350Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Decreased energy use is crucial for achieving sustainable energy solutions. This paper presents current and possible future electricity use in Swedish industry. Non-heavy lines of business (e.g. food, vehicles) that use one-third of the electricity in Swedish industry are analysed in detail. Most electricity is used in the support processes pumping and ventilation, and manufacturing by decomposition. Energy conservation can take place through e.g. more efficient light fittings and switching off ventilation during night and weekends. By energy-carrier switching, electricity used for heat production is replaced by e.g. fuel. Taking technically possible demand-side measures in the whole lines of business, according to energy audits in a set of factories, means a 35% demand reduction. A systems analysis of power production, trade, demand and conservation was made using the MODEST energy system optimisation model, which uses linear programming and considers the time-dependent impact on demand for days, weeks and seasons. Electricity that is replaced by district heating from a combined heat and power (CHP) plant has a dual impact on the electricity system through reduced demand and increased electricity generation. Reduced electricity consumption and enhanced cogeneration in Sweden enables increased electricity export, which displaces coal-fired condensing plants in the European electricity market and helps to reduce European CO2 emissions. Within the European emission trading system, those electricity conservation measures should be taken that are more cost-efficient than other ways of reducing CO2 emissions. The demand-side measures turn net electricity imports into net export and reduce annual operation costs and net CO2 emissions due to covering Swedish electricity demand by 200 million euros and 6 Mtonne, respectively. With estimated electricity conservation in the whole of Swedish industry, net electricity exports would be larger and net CO2 emissions would be even smaller.

  • 14.
    Henning, Dag
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Trygg, Louise
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Gebremedhin, Alemayehu
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Enhanced biofuel utilisation in Swedish industries, buildings and district heating2006Ingår i: the World Bioenergy 2006 Conference and exhibition on Biomass for Energy, Jönköping, Sweden, 30 may – 1 June, 2006, s. 198-203Konferensbidrag (Refereegranskat)
  • 15.
    Henning, Dag
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Trygg, Louise
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Glad, Wiktoria
    Linköpings universitet, Institutionen för tema, Tema teknik och social förändring. Linköpings universitet, Filosofiska fakulteten.
    Gustafsson, Stig-Inge
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Socio-technical analyses of energy supply and use in three Swedish municipalities striving toward sustainability2005Ingår i: Proceeding of the 1st VHU Conference on Science for Sustainable Development, Västerås, Sweden, 14-16 April, 2005, s. 133–142-Konferensbidrag (Refereegranskat)
  • 16.
    Holmgren, Kristina
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Henning, Dag
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska högskolan.
    Comparison between material and energy recovery of municipal waste from an energy perspective: A study of two Swedish municipalities2004Ingår i: Resources, Conservation and Recycling, ISSN 0921-3449, Vol. 43, nr 1, s. 51-73Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this study is to compare material recovery to waste incineration with energy recovery from the criteria of energy efficiency. Material recovery saves virgin material and also energy since production processes using recovered material are less energy intensive than processes using virgin material, whereas energy recovery saves other fuels that differ among various energy systems. Optimisations are made for the district heating systems in two Swedish municipalities, showing that it is profitable for the energy utilities in the municipalities to invest in plants using waste as a fuel for electricity and heat production. The fuels replaced by the waste differ between the municipalities. For one it is mostly wood chips, and for the other, a lot of biomass is replaced, but the largest saving is in oil. Energy savings by material recycling of the waste are calculated. Non-combustible waste, such as metals and glass save energy in various extensions when material recycled, but give no heat contribution when incinerated. It is more complicated to compare material and energy recovery of combustible waste fractions, such as cardboard, paper, plastics and biodegradable waste since they can be recycled in both fashions. For these fractions it is important to consider the configuration of the energy system. The conclusions from the two municipalities are that even if there is a district heating system able to utilise the heat, from the energy-efficiency view point; paper and hard plastics should preferably be material recovered, whereas cardboard and biodegradable waste is more suited for energy recovery through waste incineration. These calculations are done with the assumption that biomass should be regarded as a limited resource and when saved eventually eliminates fossile fuel combustion in other facilities.

  • 17.
    Sjödin, Jörgen
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Henning, Dag
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Energisystem.
    Calculating the marginal costs of a district-heating utility2004Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 78, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    District heating plays an important role in the Swedish heat-market. At the same time, the price of district heating varies considerably among different district-heating utilities. A case study is performed here in which a Swedish utility is analysed using three different methods for calculating the marginal costs of heat supply: a manual spreadsheet method, an optimising linear- programming model, and a least-cost dispatch simulation model. Calculated marginal-costs, obtained with the three methods, turn out to be similar. The calculated marginal-costs are also compared to the actual heat tariff in use by the utility. Using prices based on marginal costs should be able to bring about an efficient resource-allocation. It is found that the fixed rate the utility uses today should be replaced by a time-of-use rate, which would give a more accurate signal for customers to change their heat consumptions.

  • 18.
    Sundberg, Gunnel
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling.
    Henning, Dag
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Investments in combined heat and power plants: Influence of fuel price on cost minimised operation2002Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 43, nr 5, s. 639-650Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Liberalisation of the electricity market and governmental politics influence heat and power supply in Sweden, like in many other countries. In this paper, the impact of subsidies and fuel and electricity costs on a representative Swedish district heating system is analysed. The energy system model MODEST (model for optimisation of dynamic energy systems with time dependent components and boundary conditions) was used to optimise investments and operation for heat and power production plants. At higher electricity prices, combined heat and power introduction may be profitable in the studied system. With current fuel prices, a natural gas fired combined cycle would primarily be favourable. A lower woodchips price and a governmental grant would make cogeneration with a biomass fired steam cycle more beneficial. © 2002 Elsevier Science Ltd. All rights reserved.

1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf