Linear time-invariant approximations of nonlinear systems are used in many applications and can be obtained in several ways. For example, using system identification and the prediction-error method, it is always possible to estimate a linear model without considering the fact that the input and output measurements in many cases come from a nonlinear system. One of the main objectives of this thesis is to explain some properties of such approximate models.
More specifically, linear time-invariant models that are optimal approximations in the sense that they minimize a mean-square error criterion are considered. Linear models, both with and without a noise description, are studied. Some interesting, but in applications usually undesirable, properties of such optimal models are pointed out. It is shown that the optimal linear model can be very sensitive to small nonlinearities. Hence, the linear approximation of an almost linear system can be useless for some applications, such as robust control design. Furthermore, it is shown that standard validation methods, designed for identification of linear systems, cannot always be used to validate an optimal linear approximation of a nonlinear system.
In order to improve the models, conditions on the input signal that imply various useful properties of the linear approximations are given. It is shown, for instance, that minimum phase filtered white noise in many senses is a good choice of input signal. Furthermore, the class of separable signals is studied in detail. This class contains Gaussian signals and it turns out that these signals are especially useful for obtaining approximations of generalized Wiener-Hammerstein systems. It is also shown that some random multisine signals are separable. In addition, some theoretical results about almost linear systems are presented.
In standard methods for robust control design, the size of the model error is assumed to be known for all input signals. However, in many situations, this is not a realistic assumption when a nonlinear system is approximated with a linear model. In this thesis, it is described how robust control design of some nonlinear systems can be performed based on a discrete-time linear model and a model error model valid only for bounded inputs.
It is sometimes undesirable that small nonlinearities in a system influence the linear approximation of it. In some cases, this influence can be reduced if a small nonlinearity is included in the model. In this thesis, an identification method with this option is presented for nonlinear autoregressive systems with external inputs. Using this method, models with a parametric linear part and a nonparametric Lipschitz continuous nonlinear part can be estimated by solving a convex optimization problem.