liu.seSearch for publications in DiVA
Change search
Refine search result
1234 1 - 50 of 188
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Larsson, Fredrik
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Schön, Thomas B.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Bicycle Tracking Using Ellipse Extraction2011In: Proceedings of the 14thInternational Conference on Information Fusion, 2011, IEEE , 2011, p. 1-8Conference paper (Refereed)
    Abstract [en]

    A new approach to track bicycles from imagery sensor data is proposed. It is based on detecting ellipsoids in the images, and treat these pair-wise using a dynamic bicycle model. One important application area is in automotive collision avoidance systems, where no dedicated systems for bicyclists yet exist and where very few theoretical studies have been published.

    Possible conflicts can be predicted from the position and velocity state in the model, but also from the steering wheel articulation and roll angle that indicate yaw changes before the velocity vector changes. An algorithm is proposed which consists of an ellipsoid detection and estimation algorithm and a particle filter.

    A simulation study of three critical single target scenarios is presented, and the algorithm is shown to produce excellent state estimates. An experiment using a stationary camera and the particle filter for state estimation is performed and has shown encouraging results.

  • 2.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    A thermal infrared dataset for evaluation of short-term tracking methods2015Conference paper (Other academic)
    Abstract [en]

    During recent years, thermal cameras have decreased in both size and cost while improving image quality. The area of use for such cameras has expanded with many exciting applications, many of which require tracking of objects. While being subject to extensive research in the visual domain, tracking in thermal imagery has historically been of interest mainly for military purposes. The available thermal infrared datasets for evaluating methods addressing these problems are few and the ones that do are not challenging enough for today’s tracking algorithms. Therefore, we hereby propose a thermal infrared dataset for evaluation of short-term tracking methods. The dataset consists of 20 sequences which have been collected from multiple sources and the data format used is in accordance with the Visual Object Tracking (VOT) Challenge.

  • 3.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    A Thermal Object Tracking Benchmark2015Conference paper (Refereed)
    Abstract [en]

    Short-term single-object (STSO) tracking in thermal images is a challenging problem relevant in a growing number of applications. In order to evaluate STSO tracking algorithms on visual imagery, there are de facto standard benchmarks. However, we argue that tracking in thermal imagery is different than in visual imagery, and that a separate benchmark is needed. The available thermal infrared datasets are few and the existing ones are not challenging for modern tracking algorithms. Therefore, we hereby propose a thermal infrared benchmark according to the Visual Object Tracking (VOT) protocol for evaluation of STSO tracking methods. The benchmark includes the new LTIR dataset containing 20 thermal image sequences which have been collected from multiple sources and annotated in the format used in the VOT Challenge. In addition, we show that the ranking of different tracking principles differ between the visual and thermal benchmarks, confirming the need for the new benchmark.

  • 4.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Science & Engineering.
    Channel Coded Distribution Field Tracking for Thermal Infrared Imagery2016In: PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), IEEE , 2016, p. 1248-1256Conference paper (Refereed)
    Abstract [en]

    We address short-term, single-object tracking, a topic that is currently seeing fast progress for visual video, for the case of thermal infrared (TIR) imagery. The fast progress has been possible thanks to the development of new template-based tracking methods with online template updates, methods which have not been explored for TIR tracking. Instead, tracking methods used for TIR are often subject to a number of constraints, e.g., warm objects, low spatial resolution, and static camera. As TIR cameras become less noisy and get higher resolution these constraints are less relevant, and for emerging civilian applications, e.g., surveillance and automotive safety, new tracking methods are needed. Due to the special characteristics of TIR imagery, we argue that template-based trackers based on distribution fields should have an advantage over trackers based on spatial structure features. In this paper, we propose a template-based tracking method (ABCD) designed specifically for TIR and not being restricted by any of the constraints above. In order to avoid background contamination of the object template, we propose to exploit background information for the online template update and to adaptively select the object region used for tracking. Moreover, we propose a novel method for estimating object scale change. The proposed tracker is evaluated on the VOT-TIR2015 and VOT2015 datasets using the VOT evaluation toolkit and a comparison of relative ranking of all common participating trackers in the challenges is provided. Further, the proposed tracker, ABCD, and the VOT-TIR2015 winner SRDCFir are evaluated on maritime data. Experimental results show that the ABCD tracker performs particularly well on thermal infrared sequences.

  • 5.
    Berg, Amanda
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Electrical Engineering, Computer Vision. Termisk Syst Tekn AB, Diskettgatan 11 B, SE-58335 Linkoping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Syst Tekn AB, Diskettgatan 11 B, SE-58335 Linkoping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Enhanced analysis of thermographic images for monitoring of district heat pipe networks2016In: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 83, no 2, p. 215-223Article in journal (Refereed)
    Abstract [en]

    We address two problems related to large-scale aerial monitoring of district heating networks. First, we propose a classification scheme to reduce the number of false alarms among automatically detected leakages in district heating networks. The leakages are detected in images captured by an airborne thermal camera, and each detection corresponds to an image region with abnormally high temperature. This approach yields a significant number of false positives, and we propose to reduce this number in two steps; by (a) using a building segmentation scheme in order to remove detections on buildings, and (b) to use a machine learning approach to classify the remaining detections as true or false leakages. We provide extensive experimental analysis on real-world data, showing that this post-processing step significantly improves the usefulness of the system. Second, we propose a method for characterization of leakages over time, i.e., repeating the image acquisition one or a few years later and indicate areas that suffer from an increased energy loss. We address the problem of finding trends in the degradation of pipe networks in order to plan for long-term maintenance, and propose a visualization scheme exploiting the consecutive data collections.

  • 6.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Term Syst Tekn AB, Diskettgatan 11 B, S-58335 Linkoping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Term Syst Tekn AB, Diskettgatan 11 B, S-58335 Linkoping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Generating Visible Spectrum Images from Thermal Infrared2018In: PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), IEEE , 2018, p. 1224-1233Conference paper (Refereed)
    Abstract [en]

    Transformation of thermal infrared (TIR) images into visual, i.e. perceptually realistic color (RGB) images, is a challenging problem. TIR cameras have the ability to see in scenarios where vision is severely impaired, for example in total darkness or fog, and they are commonly used, e.g., for surveillance and automotive applications. However, interpretation of TIR images is difficult, especially for untrained operators. Enhancing the TIR image display by transforming it into a plausible, visual, perceptually realistic RGB image presumably facilitates interpretation. Existing grayscale to RGB, so called, colorization methods cannot be applied to TIR images directly since those methods only estimate the chrominance and not the luminance. In the absence of conventional colorization methods, we propose two fully automatic TIR to visual color image transformation methods, a two-step and an integrated approach, based on Convolutional Neural Networks. The methods require neither pre- nor postprocessing, do not require any user input, and are robust to image pair misalignments. We show that the methods do indeed produce perceptually realistic results on publicly available data, which is assessed both qualitatively and quantitatively.

  • 7.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Generating Visible Spectrum Images from Thermal Infrared2018In: Proceedings 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops CVPRW 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1143-1152Conference paper (Refereed)
    Abstract [en]

    Transformation of thermal infrared (TIR) images into visual, i.e. perceptually realistic color (RGB) images, is a challenging problem. TIR cameras have the ability to see in scenarios where vision is severely impaired, for example in total darkness or fog, and they are commonly used, e.g., for surveillance and automotive applications. However, interpretation of TIR images is difficult, especially for untrained operators. Enhancing the TIR image display by transforming it into a plausible, visual, perceptually realistic RGB image presumably facilitates interpretation. Existing grayscale to RGB, so called, colorization methods cannot be applied to TIR images directly since those methods only estimate the chrominance and not the luminance. In the absence of conventional colorization methods, we propose two fully automatic TIR to visual color image transformation methods, a two-step and an integrated approach, based on Convolutional Neural Networks. The methods require neither pre- nor postprocessing, do not require any user input, and are robust to image pair misalignments. We show that the methods do indeed produce perceptually realistic results on publicly available data, which is assessed both qualitatively and quantitatively.

  • 8.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Object Tracking in Thermal Infrared Imagery based on Channel Coded Distribution Fields2017Conference paper (Other academic)
    Abstract [en]

    We address short-term, single-object tracking, a topic that is currently seeing fast progress for visual video, for the case of thermal infrared (TIR) imagery. Tracking methods designed for TIR are often subject to a number of constraints, e.g., warm objects, low spatial resolution, and static camera. As TIR cameras become less noisy and get higher resolution these constraints are less relevant, and for emerging civilian applications, e.g., surveillance and automotive safety, new tracking methods are needed. Due to the special characteristics of TIR imagery, we argue that template-based trackers based on distribution fields should have an advantage over trackers based on spatial structure features. In this paper, we propose a templatebased tracking method (ABCD) designed specifically for TIR and not being restricted by any of the constraints above. The proposed tracker is evaluated on the VOT-TIR2015 and VOT2015 datasets using the VOT evaluation toolkit and a comparison of relative ranking of all common participating trackers in the challenges is provided. Experimental results show that the ABCD tracker performs particularly well on thermal infrared sequences.

  • 9.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    An Overview of the Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge2016Conference paper (Other academic)
    Abstract [en]

    The Thermal Infrared Visual Object Tracking (VOT-TIR2015) Challenge was organized in conjunction with ICCV2015. It was the first benchmark on short-term,single-target tracking in thermal infrared (TIR) sequences. The challenge aimed at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. It was based on the VOT2013 Challenge, but introduced the following novelties: (i) the utilization of the LTIR (Linköping TIR) dataset, (ii) adaption of the VOT2013 attributes to thermal data, (iii) a similar evaluation to that of VOT2015. This paper provides an overview of the VOT-TIR2015 Challenge as well as the results of the 24 participating trackers.

  • 10.
    Berg, Amanda
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Öfjäll, Kristoffer
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Detecting Rails and Obstacles Using a Train-Mounted Thermal Camera2015In: Image Analysis: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Rasmus R. Paulsen; Kim S. Pedersen, Springer, 2015, p. 492-503Conference paper (Refereed)
    Abstract [en]

    We propose a method for detecting obstacles on the railway in front of a moving train using a monocular thermal camera. The problem is motivated by the large number of collisions between trains and various obstacles, resulting in reduced safety and high costs. The proposed method includes a novel way of detecting the rails in the imagery, as well as a way to detect anomalies on the railway. While the problem at a first glance looks similar to road and lane detection, which in the past has been a popular research topic, a closer look reveals that the problem at hand is previously unaddressed. As a consequence, relevant datasets are missing as well, and thus our contribution is two-fold: We propose an approach to the novel problem of obstacle detection on railways and we describe the acquisition of a novel data set.

  • 11.
    Bianco, Giuseppe
    et al.
    Lund University, Sweden.
    Ilieva, Mihaela
    Lund University, Sweden; Bulgarian Academic Science, Bulgaria.
    Veibäck, Clas
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Öfjäll, Kristoffer
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Gadomska, Alicja
    Lund University, Sweden.
    Hendeby, Gustaf
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Åkesson, Susanne
    Lund University, Sweden.
    Emlen funnel experiments revisited: methods update for studying compass orientation in songbirds2016In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 6, no 19, p. 6930-6942Article in journal (Refereed)
    Abstract [en]

    1 Migratory songbirds carry an inherited capacity to migrate several thousand kilometers each year crossing continental landmasses and barriers between distant breeding sites and wintering areas. How individual songbirds manage with extreme precision to find their way is still largely unknown. The functional characteristics of biological compasses used by songbird migrants has mainly been investigated by recording the birds directed migratory activity in circular cages, so-called Emlen funnels. This method is 50 years old and has not received major updates over the past decades. The aim of this work was to compare the results from newly developed digital methods with the established manual methods to evaluate songbird migratory activity and orientation in circular cages. 2 We performed orientation experiments using the European robin (Erithacus rubecula) using modified Emlen funnels equipped with thermal paper and simultaneously recorded the songbird movements from above. We evaluated and compared the results obtained with five different methods. Two methods have been commonly used in songbirds orientation experiments; the other three methods were developed for this study and were based either on evaluation of the thermal paper using automated image analysis, or on the analysis of videos recorded during the experiment. 3 The methods used to evaluate scratches produced by the claws of birds on the thermal papers presented some differences compared with the video analyses. These differences were caused mainly by differences in scatter, as any movement of the bird along the sloping walls of the funnel was recorded on the thermal paper, whereas video evaluations allowed us to detect single takeoff attempts by the birds and to consider only this behavior in the orientation analyses. Using computer vision, we were also able to identify and separately evaluate different behaviors that were impossible to record by the thermal paper. 4 The traditional Emlen funnel is still the most used method to investigate compass orientation in songbirds under controlled conditions. However, new numerical image analysis techniques provide a much higher level of detail of songbirds migratory behavior and will provide an increasing number of possibilities to evaluate and quantify specific behaviors as new algorithms will be developed.

  • 12.
    Chandaria, Jigna
    et al.
    BBC Research, United Kingdom.
    Thomas, Graham
    BBC Research, United Kingdom.
    Bartczak, Bogumil
    University of Kiel, Germany.
    Koch, Reinhard
    University of Kiel, Germany.
    Becker, Mario
    Fraunhofer IGD, Germany.
    Bleser, Gabriele
    Fraunhofer IGD, Germany.
    Stricker, Didier
    Fraunhofer IGD, Germany.
    Wohlleber, Cedric
    Fraunhofer IGD, Germany.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Hol, Jeroen
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Schön, Thomas
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Skoglund, Johan
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Slycke, Per
    Xsens, The Netherlands.
    Smeitz, Sebastiaan
    Xsens, The Netherlands.
    Real-Time Camera Tracking in the MATRIS Project2007In: Smpte Journal, ISSN 0036-1682, Vol. 116, no 7-8, p. 266-271Article in journal (Refereed)
    Abstract [en]

    In order to insert a virtual object into a TV image, the graphics system needs to know precisely how the camera is moving, so that the virtual object can be rendered in the correct place in every frame. Nowadays this can be achieved relatively easily in post-production, or in a studio equipped with a special tracking system. However, for live shooting on location, or in a studio that is not specially equipped, installing such a system can be difficult or uneconomic. To overcome these limitations, the MATRIS project is developing a real-time system for measuring the movement of a camera. The system uses image analysis to track naturally occurring features in the scene, and data from an inertial sensor. No additional sensors, special markers, or camera mounts are required. This paper gives an overview of the system and presents some results.

  • 13.
    Chellappa, Rama
    et al.
    Department of Electrical and Computer Engineering, University of Maryland, USA.
    Heyden, AndersLund University, Sweden.Laurendeau, DenisUniversité Laval, Canada.Felsberg, MichaelLinköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).Borga, MagnusLinköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Arts and Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Special issue on ICPR 2014 awarded papers2016Collection (editor) (Refereed)
    Abstract [en]

    We, the Guest Editors of this special issue of Pattern Recognition Letters are pleased to share these contributions with you. The papers included here are based on work from the 22nd International Conference on Pattern Recognition (IAPR) in Stockholm, Sweden, held August 24–28, 2014. The papers selected for this special issue were those winning one of the IAPR awards, as well as one paper by a former student of the winner of the KS Fu Prize, Prof. Jitendra Malik. Taken together, this body of work represents some of the finest research being conducted by the IAPR community worldwide, it builds on a rich legacy of accomplishment by the entire community, and it offers a view to the future, to where we are going as a scientific community.

    For each of the award-winning papers, the authors were asked to revise and extend their contributions to full journal length and to provide true added value vis-à-vis the original conference submission. In some cases, the authors elected to modify the titles slightly, and in some cases the list of authors has also been modified. The resulting manuscripts were sent out for full review by a different set of referees than those who reviewed the conference versions. The process, including required revisions, was in accordance with the standing editorial policy of Pattern Recognition Letters, resulting in the final versions accepted and appearing here. These are thoroughly vetted, high-caliber scientific contributions.

    It has been our honor to serve as Guest Editors for this special issue. We would like to thank the Editors of Pattern Recognition Letters for allowing us this opportunity. We are especially grateful to Dr. Gabriella Sanniti di Baja for her enthusiasm, support, and her willingness to keep prodding us along to bring the special issue through to completion. We would also like to thank all of those who reviewed the papers, both originally for the conference and subsequently for the journal, and those who served on the ICPR awards and KS Fu Prize committees.

    Finally, we express our heartfelt gratitude to all of the authors for taking the time to prepare these versions for our collective enlightenment, sharing their knowledge, innovation, and discoveries with the rest of us.

  • 14.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Bhat, Goutam
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Gladh, Susanna
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Deep motion and appearance cues for visual tracking2018In: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344Article in journal (Refereed)
    Abstract [en]

    Generic visual tracking is a challenging computer vision problem, with numerous applications. Most existing approaches rely on appearance information by employing either hand-crafted features or deep RGB features extracted from convolutional neural networks. Despite their success, these approaches struggle in case of ambiguous appearance information, leading to tracking failure. In such cases, we argue that motion cue provides discriminative and complementary information that can improve tracking performance. Contrary to visual tracking, deep motion features have been successfully applied for action recognition and video classification tasks. Typically, the motion features are learned by training a CNN on optical flow images extracted from large amounts of labeled videos. In this paper, we investigate the impact of deep motion features in a tracking-by-detection framework. We also evaluate the fusion of hand-crafted, deep RGB, and deep motion features and show that they contain complementary information. To the best of our knowledge, we are the first to propose fusing appearance information with deep motion features for visual tracking. Comprehensive experiments clearly demonstrate that our fusion approach with deep motion features outperforms standard methods relying on appearance information alone.

  • 15.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Bhat, Goutam
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    ECO: Efficient Convolution Operators for Tracking2017In: 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), IEEE , 2017, p. 6931-6939Conference paper (Refereed)
    Abstract [en]

    In recent years, Discriminative Correlation Filter (DCF) based methods have significantly advanced the state-of-the-art in tracking. However, in the pursuit of ever increasing tracking performance, their characteristic speed and real-time capability have gradually faded. Further, the increasingly complex models, with massive number of trainable parameters, have introduced the risk of severe over-fitting. In this work, we tackle the key causes behind the problems of computational complexity and over-fitting, with the aim of simultaneously improving both speed and performance. We revisit the core DCF formulation and introduce: (i) a factorized convolution operator, which drastically reduces the number of parameters in the model; (ii) a compact generative model of the training sample distribution, that significantly reduces memory and time complexity, while providing better diversity of samples; (iii) a conservative model update strategy with improved robustness and reduced complexity. We perform comprehensive experiments on four benchmarks: VOT2016, UAV123, OTB-2015, and Temple-Color. When using expensive deep features, our tracker provides a 20-fold speedup and achieves a 13.0% relative gain in Expected Average Overlap compared to the top ranked method [12] in the VOT2016 challenge. Moreover, our fast variant, using hand-crafted features, operates at 60 Hz on a single CPU, while obtaining 65.0% AUC on OTB-2015.

  • 16.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Accurate Scale Estimation for Robust Visual Tracking2014In: Proceedings of the British Machine Vision Conference 2014 / [ed] Michel Valstar, Andrew French and Tony Pridmore, BMVA Press , 2014Conference paper (Refereed)
    Abstract [en]

    Robust scale estimation is a challenging problem in visual object tracking. Most existing methods fail to handle large scale variations in complex image sequences. This paper presents a novel approach for robust scale estimation in a tracking-by-detection framework. The proposed approach works by learning discriminative correlation filters based on a scale pyramid representation. We learn separate filters for translation and scale estimation, and show that this improves the performance compared to an exhaustive scale search. Our scale estimation approach is generic as it can be incorporated into any tracking method with no inherent scale estimation.

    Experiments are performed on 28 benchmark sequences with significant scale variations. Our results show that the proposed approach significantly improves the performance by 18.8 % in median distance precision compared to our baseline. Finally, we provide both quantitative and qualitative comparison of our approach with state-of-the-art trackers in literature. The proposed method is shown to outperform the best existing tracker by 16.6 % in median distance precision, while operating at real-time.

  • 17.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking2016In: 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CPVR), IEEE , 2016, p. 1430-1438Conference paper (Refereed)
    Abstract [en]

    Tracking-by-detection methods have demonstrated competitive performance in recent years. In these approaches, the tracking model heavily relies on the quality of the training set. Due to the limited amount of labeled training data, additional samples need to be extracted and labeled by the tracker itself. This often leads to the inclusion of corrupted training samples, due to occlusions, misalignments and other perturbations. Existing tracking-by-detection methods either ignore this problem, or employ a separate component for managing the training set. We propose a novel generic approach for alleviating the problem of corrupted training samples in tracking-by-detection frameworks. Our approach dynamically manages the training set by estimating the quality of the samples. Contrary to existing approaches, we propose a unified formulation by minimizing a single loss over both the target appearance model and the sample quality weights. The joint formulation enables corrupted samples to be down-weighted while increasing the impact of correct ones. Experiments are performed on three benchmarks: OTB-2015 with 100 videos, VOT-2015 with 60 videos, and Temple-Color with 128 videos. On the OTB-2015, our unified formulation significantly improves the baseline, with a gain of 3.8% in mean overlap precision. Finally, our method achieves state-of-the-art results on all three datasets.

  • 18.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Discriminative Scale Space Tracking2017In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 39, no 8, p. 1561-1575Article in journal (Refereed)
    Abstract [en]

    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5 percent in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50 percent higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.

  • 19.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Coloring Channel Representations for Visual Tracking2015In: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Rasmus R. Paulsen, Kim S. Pedersen, Springer, 2015, Vol. 9127, p. 117-129Conference paper (Refereed)
    Abstract [en]

    Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biologically-inspired channel representations \cite{felsberg06PAMI} have shown to provide promising results in many applications ranging from autonomous driving to visual tracking.

    This paper investigates the problem of coloring channel representations for visual tracking. We evaluate two strategies, channel concatenation and channel product, to construct channel coded color representations. The proposed channel coded color representations are generic and can be used beyond tracking.

    Experiments are performed on 41 challenging benchmark videos. Our experiments clearly suggest that a careful selection of color feature together with an optimal fusion strategy, significantly outperforms the standard luminance based channel representation. Finally, we show promising results compared to state-of-the-art tracking methods in the literature.

  • 20.
    Danelljan, Martin
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Electrical Engineering, Computer Vision.
    Häger, Gustav
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Electrical Engineering, Computer Vision.
    Khan, Fahad Shahbaz
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Electrical Engineering, Computer Vision.
    Felsberg, Michael
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Electrical Engineering, Computer Vision.
    Convolutional Features for Correlation Filter Based Visual Tracking2015In: Proceedings of the IEEE International Conference on Computer Vision, IEEE conference proceedings, 2015, p. 621-629Conference paper (Refereed)
    Abstract [en]

    Visual object tracking is a challenging computer vision problem with numerous real-world applications. This paper investigates the impact of convolutional features for the visual tracking problem. We propose to use activations from the convolutional layer of a CNN in discriminative correlation filter based tracking frameworks. These activations have several advantages compared to the standard deep features (fully connected layers). Firstly, they mitigate the need of task specific fine-tuning. Secondly, they contain structural information crucial for the tracking problem. Lastly, these activations have low dimensionality. We perform comprehensive experiments on three benchmark datasets: OTB, ALOV300++ and the recently introduced VOT2015. Surprisingly, different to image classification, our results suggest that activations from the first layer provide superior tracking performance compared to the deeper layers. Our results further show that the convolutional features provide improved results compared to standard handcrafted features. Finally, results comparable to state-of-theart trackers are obtained on all three benchmark datasets.

  • 21.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Learning Spatially Regularized Correlation Filters for Visual Tracking2015In: Proceedings of the International Conference in Computer Vision (ICCV), 2015, IEEE Computer Society, 2015, p. 4310-4318Conference paper (Refereed)
    Abstract [en]

    Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model.

    We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.

  • 22.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Granström, Karl
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Heintz, Fredrik
    Linköping University, Department of Computer and Information Science, Artificial Intelligence and Integrated Computer Systems. Linköping University, The Institute of Technology.
    Rudol, Piotr
    Linköping University, Department of Computer and Information Science, Artificial Intelligence and Integrated Computer Systems. Linköping University, The Institute of Technology.
    Wzorek, Mariusz
    Linköping University, Department of Computer and Information Science, Artificial Intelligence and Integrated Computer Systems. Linköping University, The Institute of Technology.
    Kvarnström, Jonas
    Linköping University, Department of Computer and Information Science, Artificial Intelligence and Integrated Computer Systems. Linköping University, The Institute of Technology.
    Doherty, Patrick
    Linköping University, Department of Computer and Information Science, Artificial Intelligence and Integrated Computer Systems. Linköping University, The Institute of Technology.
    A Low-Level Active Vision Framework for Collaborative Unmanned Aircraft Systems2015In: COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I / [ed] Lourdes Agapito, Michael M. Bronstein and Carsten Rother, Springer Publishing Company, 2015, Vol. 8925, p. 223-237Conference paper (Refereed)
    Abstract [en]

    Micro unmanned aerial vehicles are becoming increasingly interesting for aiding and collaborating with human agents in myriads of applications, but in particular they are useful for monitoring inaccessible or dangerous areas. In order to interact with and monitor humans, these systems need robust and real-time computer vision subsystems that allow to detect and follow persons.

    In this work, we propose a low-level active vision framework to accomplish these challenging tasks. Based on the LinkQuad platform, we present a system study that implements the detection and tracking of people under fully autonomous flight conditions, keeping the vehicle within a certain distance of a person. The framework integrates state-of-the-art methods from visual detection and tracking, Bayesian filtering, and AI-based control. The results from our experiments clearly suggest that the proposed framework performs real-time detection and tracking of persons in complex scenarios

  • 23.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Meneghetti, Giulia
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    A Probabilistic Framework for Color-Based Point Set Registration2016In: 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CPVR), IEEE , 2016, p. 1818-1826Conference paper (Refereed)
    Abstract [en]

    In recent years, sensors capable of measuring both color and depth information have become increasingly popular. Despite the abundance of colored point set data, state-of-the-art probabilistic registration techniques ignore the available color information. In this paper, we propose a probabilistic point set registration framework that exploits available color information associated with the points. Our method is based on a model of the joint distribution of 3D-point observations and their color information. The proposed model captures discriminative color information, while being computationally efficient. We derive an EM algorithm for jointly estimating the model parameters and the relative transformations. Comprehensive experiments are performed on the Stanford Lounge dataset, captured by an RGB-D camera, and two point sets captured by a Lidar sensor. Our results demonstrate a significant gain in robustness and accuracy when incorporating color information. On the Stanford Lounge dataset, our approach achieves a relative reduction of the failure rate by 78% compared to the baseline. Furthermore, our proposed model outperforms standard strategies for combining color and 3D-point information, leading to state-of-the-art results.

  • 24.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Meneghetti, Giulia
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Aligning the Dissimilar: A Probabilistic Feature-Based Point Set Registration Approach2016In: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) 2016, IEEE, 2016, p. 247-252Conference paper (Refereed)
    Abstract [en]

    3D-point set registration is an active area of research in computer vision. In recent years, probabilistic registration approaches have demonstrated superior performance for many challenging applications. Generally, these probabilistic approaches rely on the spatial distribution of the 3D-points, and only recently color information has been integrated into such a framework, significantly improving registration accuracy. Other than local color information, high-dimensional 3D shape features have been successfully employed in many applications such as action recognition and 3D object recognition. In this paper, we propose a probabilistic framework to integrate high-dimensional 3D shape features with color information for point set registration. The 3D shape features are distinctive and provide complementary information beneficial for robust registration. We validate our proposed framework by performing comprehensive experiments on the challenging Stanford Lounge dataset, acquired by a RGB-D sensor, and an outdoor dataset captured by a Lidar sensor. The results clearly demonstrate that our approach provides superior results both in terms of robustness and accuracy compared to state-of-the-art probabilistic methods.

  • 25.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Robinson, Andreas
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking2016In: Computer Vision - ECCV 2016, Pt V, SPRINGER INT PUBLISHING AG , 2016, Vol. 9909, p. 472-488Conference paper (Refereed)
    Abstract [en]

    Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data by including all shifted versions of a training sample. However, the underlying DCF formulation is restricted to single-resolution feature maps, significantly limiting its potential. In this paper, we go beyond the conventional DCF framework and introduce a novel formulation for training continuous convolution filters. We employ an implicit interpolation model to pose the learning problem in the continuous spatial domain. Our proposed formulation enables efficient integration of multi-resolution deep feature maps, leading to superior results on three object tracking benchmarks: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate). Additionally, our approach is capable of sub-pixel localization, crucial for the task of accurate feature point tracking. We also demonstrate the effectiveness of our learning formulation in extensive feature point tracking experiments.

  • 26.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Shahbaz Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    van de Weijer, Joost
    Computer Vision Center, CS Dept. Universitat Autonoma de Barcelona, Spain.
    Adaptive Color Attributes for Real-Time Visual Tracking2014In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2014, IEEE Computer Society, 2014, p. 1090-1097Conference paper (Refereed)
    Abstract [en]

    Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power.

    This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional variant of color attributes. Both quantitative and attributebased evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24% in median distance precision. Furthermore, we show that our approach outperforms state-of-the-art tracking methods while running at more than 100 frames per second.

  • 27.
    Duits, Remco
    et al.
    Department of Biomedicial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Florack, Luc
    Department of Biomedicial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Platel, Bram
    Department of Biomedicial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
    α Scale Spaces on a Bounded Domain2003In: Scale Space Methods in Computer Vision / [ed] Lewis D. Griffin and Martin Lillholm, 2003, Vol. 2695, p. 502-518Conference paper (Refereed)
    Abstract [en]

    We consider alpha scale spaces, a parameterized class (alpha is an element of (0, 1]) of scale space representations beyond the well-established Gaussian scale space, which are generated by the alpha-th power of the minus Laplace operator on a bounded domain using the Neumann boundary condition. The Neumann boundary condition ensures that there is no grey-value flux through the boundary. Thereby no artificial grey-values from outside the image affect the evolution proces, which is the case for the alpha scale spaces on an unbounded domain. Moreover, the connection between the a scale spaces which is not trivial in the unbounded domain case, becomes straightforward: The generator of the Gaussian semigroup extends to a compact, self-adjoint operator on the Hilbert space L-2(Omega) and therefore it has a complete countable set of eigen functions. Taking the alpha-th power of the Gaussian generator simply boils down to taking the alpha-th power of the corresponding eigenvalues. Consequently, all alpha scale spaces have exactly the same eigen-modes and can be implemented simultaneously as scale dependent Fourier series. The only difference between them is the (relative) contribution of each eigen-mode to the evolution proces. By introducing the notion of (non-dimensional) relative scale in each a scale space, we are able to compare the various alpha scale spaces. The case alpha = 0.5, where the generator equals the square root of the minus Laplace operator leads to Poisson scale space, which is at least as interesting as Gaussian scale space and can be extended to a (Clifford) analytic scale space.

  • 28.
    Duits, Remco
    et al.
    Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Granlund, Gösta
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    ter Haar Romeny, Bart M.
    Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands .
    Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group2007In: International Journal of Computer Vision, ISSN 0920-5691, E-ISSN 1573-1405, Vol. 72, no 1, p. 79-102Article in journal (Refereed)
    Abstract [en]

    Inspired by the early visual system of many mammalians we consider the construction of-and reconstruction from- an orientation score Uf:R2×S1→C as a local orientation representation of an image, f:R2→R . The mapping f↦Uf is a wavelet transform Wψ corresponding to a reducible representation of the Euclidean motion group onto L2(R2) and oriented wavelet ψ∈L2(R2) . This wavelet transform is a special case of a recently developed generalization of the standard wavelet theory and has the practical advantage over the usual wavelet approaches in image analysis (constructed by irreducible representations of the similitude group) that it allows a stable reconstruction from one (single scale) orientation score. Since our wavelet transform is a unitary mapping with stable inverse, we directly relate operations on orientation scores to operations on images in a robust manner.

    Furthermore, by geometrical examination of the Euclidean motion group G=R2R×T , which is the domain of our orientation scores, we deduce that an operator Φ on orientation scores must be left invariant to ensure that the corresponding operator W−1ψΦWψ on images is Euclidean invariant. As an example we consider all linear second order left invariant evolutions on orientation scores corresponding to stochastic processes on G. As an application we detect elongated structures in (medical) images and automatically close the gaps between them.

    Finally, we consider robust orientation estimates by means of channel representations, where we combine robust orientation estimation and learning of wavelets resulting in an auto-associative processing of orientation features. Here linear averaging of the channel representation is equivalent to robust orientation estimation and an adaptation of the wavelet to the statistics of the considered image class leads to an auto-associative behavior of the system.

  • 29.
    Eldesokey, Abdelrahman
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Ellipse Detection for Visual Cyclists Analysis “In the Wild”2017In: Computer Analysis of Images and Patterns: 17th International Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part I / [ed] Michael Felsberg, Anders Heyden and Norbert Krüger, Springer, 2017, Vol. 10424, p. 319-331Conference paper (Refereed)
    Abstract [en]

    Autonomous driving safety is becoming a paramount issue due to the emergence of many autonomous vehicle prototypes. The safety measures ensure that autonomous vehicles are safe to operate among pedestrians, cyclists and conventional vehicles. While safety measures for pedestrians have been widely studied in literature, little attention has been paid to safety measures for cyclists. Visual cyclists analysis is a challenging problem due to the complex structure and dynamic nature of the cyclists. The dynamic model used for cyclists analysis heavily relies on the wheels. In this paper, we investigate the problem of ellipse detection for visual cyclists analysis in the wild. Our first contribution is the introduction of a new challenging annotated dataset for bicycle wheels, collected in real-world urban environment. Our second contribution is a method that combines reliable arcs selection and grouping strategies for ellipse detection. The reliable selection and grouping mechanism leads to robust ellipse detections when combined with the standard least square ellipse fitting approach. Our experiments clearly demonstrate that our method provides improved results, both in terms of accuracy and robustness in challenging urban environment settings.

  • 30.
    Eldesokey, Abdelrahman
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad Shahbaz
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Inception Institute of Artificial Intelligence Abu Dhabi, UAE.
    Propagating Confidences through CNNs for Sparse Data Regression2018Conference paper (Refereed)
    Abstract [en]

    In most computer vision applications, convolutional neural networks (CNNs) operate on dense image data generated by ordinary cameras. Designing CNNs for sparse and irregularly spaced input data is still an open problem with numerous applications in autonomous driving, robotics, and surveillance. To tackle this challenging problem, we introduce an algebraically-constrained convolution layer for CNNs with sparse input and demonstrate its capabilities for the scene depth completion task. We propose novel strategies for determining the confidence from the convolution operation and propagating it to consecutive layers. Furthermore, we propose an objective function that simultaneously minimizes the data error while maximizing the output confidence. Comprehensive experiments are performed on the KITTI depth benchmark and the results clearly demonstrate that the proposed approach achieves superior performance while requiring three times fewer parameters than the state-of-the-art methods. Moreover, our approach produces a continuous pixel-wise confidence map enabling information fusion, state inference, and decision support.

  • 31.
    Ellis, Liam
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Bowden, Richard
    University of Surrey.
    Affordance mining: Forming perception through action2011In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) / [ed] Kimmel, Ron, Klette, Reinhard, Sugimoto, Akihiro, Springer , 2011, p. 525-538Conference paper (Refereed)
    Abstract [en]

    This work employs data mining algorithms to discover visual entities that are strongly associated to autonomously discovered modes of action, in an embodied agent. Mappings are learnt from these perceptual entities, onto the agents action space. In general, low dimensional action spaces are better suited to unsupervised learning than high dimensional percept spaces, allowing for structure to be discovered in the action space, and used to organise the perceptual space. Local feature configurations that are strongly associated to a particular ‘type’ of action (and not all other action types) are considered likely to be relevant in eliciting that action type. By learning mappings from these relevant features onto the action space, the system is able to respond in real time to novel visual stimuli. The proposed approach is demonstrated on an autonomous navigation task, and the system is shown to identify the relevant visual entities to the task and to generate appropriate responses.

  • 32.
    Ellis, Liam
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Pugeault, Nicolas
    CVSSP, University of Surrey, Guildford, UK.
    Öfjäll, Kristoffer
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Hedborg, Johan
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Bowden, Richard
    CVSSP, University of Surrey, Guildford, UK.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Autonomous Navigation and Sign Detector Learning2013In: IEEE Workshop on Robot Vision(WORV) 2013, IEEE , 2013, p. 144-151Conference paper (Refereed)
    Abstract [en]

    This paper presents an autonomous robotic system that incorporates novel Computer Vision, Machine Learning and Data Mining algorithms in order to learn to navigate and discover important visual entities. This is achieved within a Learning from Demonstration (LfD) framework, where policies are derived from example state-to-action mappings. For autonomous navigation, a mapping is learnt from holistic image features (GIST) onto control parameters using Random Forest regression. Additionally, visual entities (road signs e.g. STOP sign) that are strongly associated to autonomously discovered modes of action (e.g. stopping behaviour) are discovered through a novel Percept-Action Mining methodology. The resulting sign detector is learnt without any supervision (no image labeling or bounding box annotations are used). The complete system is demonstrated on a fully autonomous robotic platform, featuring a single camera mounted on a standard remote control car. The robot carries a PC laptop, that performs all the processing on board and in real-time.

  • 33.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    A Novel two-step Method for CT Reconstruction2008In: Bildverarbeitung für die Medizin, Heidelberg: Springer , 2008, p. 303-307Conference paper (Refereed)
    Abstract [en]

    In this paper we address the parallel beam 2D computer tomography reconstruction. The proposed method belongs to the field of analytic reconstruction methods and is compared to several methods known in the field, among other the two-step Hilbert-transform method. In contrast to the latter, the derivative data is multiplied with an orientation vector and the Hilbert transform is replaced with the Riesz transform. Experimental results show that the new method is superior to established ones concerning aliasing, noise, and DC errors.

  • 34.
    Felsberg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Adaptive Filtering using Channel Representations2012In: Mathematical Methods for Signal and Image Analysis and Representation / [ed] Luc Florack, Remco Duits, Geurt Jongbloed, Marie-Colette Lieshout, Laurie Davies, Springer London, 2012, p. 31-48Chapter in book (Refereed)
    Abstract [en]

    This book presents a mathematical methodology for image analysis tasks at the edge of current research, including anisotropic diffusion filtering of tensor fields. Instead of specific applications, it explores methodological structures on which they are built.

  • 35.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Autocorrelation-Driven Diffusion Filtering2011In: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 20, no 7, p. 1797-1806Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a novel scheme for anisotropic diffusion driven by the image autocorrelation function. We show the equivalence of this scheme to a special case of iterated adaptive filtering. By determining the diffusion tensor field from an autocorrelation estimate, we obtain an evolution equation that is computed from a scalar product of diffusion tensor and the image Hessian. We propose further a set of filters to approximate the Hessian on a minimized spatial support. On standard benchmarks, the resulting method performs favorable in many cases, in particular at low noise levels. In a GPU implementation, video real-time performance is easily achieved.

  • 36.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Autocorrelation-Driven Diffusion Filtering2011Data set
    Abstract [en]

    In this paper, we present a novel scheme for anisotropic diffusion driven by the image autocorrelation function. We show the equivalence of this scheme to a special case of iterated adaptive filtering. By determining the diffusion tensor field from an autocorrelation estimate, we obtain an evolution equation that is computed from a scalar product of diffusion tensor and the image Hessian. We propose further a set of filters to approximate the Hessian on a minimized spatial support. On standard benchmarks, the resulting method performs favorable in many cases, in particular at low noise levels. In a GPU implementation, video real-time performance is easily achieved.

  • 37.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    COSPAL -- A Study on Artificial Cognitive Systems2008In: Engineering & technology, ISSN 1750-9637, Vol. 3, no 18Article in journal (Other (popular science, discussion, etc.))
  • 38.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Disparity from monogenic phase2002In: DAGM Symposium Mustererkennung, Zurich, Springer, Heidelberg , 2002, Vol. 2449, p. 248-256Conference paper (Refereed)
    Abstract [en]

    Disparity estimation is a fundamental problem of computer vision. Besides other approaches, disparity estimation from phase information is a quite wide-spread technique. In the present paper, we have considered the influence of the involved quadrature filters and we have replaced them with filters based on the monogenic signal. The implemented algorithm makes use of a scale-pyramid and applies channel encoding for the representation and fusion of the estimated data. The performed experiments show a significant improvement of the results.

  • 39.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Efficient Computation of Feature Hierarchies using Framelets2010In: Inverse Problems and Applications, 2010Conference paper (Other academic)
  • 40.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Enhanced Distribution Field Tracking using Channel Representations2013In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), 2013, IEEE conference proceedings, 2013, p. 121-128Conference paper (Refereed)
    Abstract [en]

    Visual tracking of objects under varying lighting conditions and changes of the object appearance, such as articulation and change of aspect, is a challenging problem. Due to its robustness and speed, distribution field tracking is among the state-of-the-art approaches for tracking objects with constant size in grayscale sequences. According to the theory of averaged shifted histograms, distribution fields are an approximation of kernel density estimates. Another, more efficient approximation are channel representations, which are used in the present paper to derive an enhanced  computational scheme for tracking. This enhanced distribution field tracking method outperforms several state-ofthe-art methods on the VOT2013 challenge, which evaluates accuracy, robustness, and speed.

  • 41.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Extending Graph-Cut to Continuous Value Domain Minimization2007In: Canadian Conference on Computer and Robot Vision,2007, Los Alamitos, CA, USA: IEEE , 2007, p. 274-Conference paper (Refereed)
  • 42.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Extending Graph-Cut to Continuous Value Domain Minimization2007In: SSBA,2007, 2007Conference paper (Other academic)
  • 43.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Five years after the Deep Learning revolution of computer vision: State of the art methods for online image and video analysis2017Report (Other academic)
    Abstract [en]

    The purpose of this document is to reect on novel and upcoming methods for computer vision that might have relevance for application in robot vision and video analytics. The document covers many dierent sub-elds of computer vision, most of which have been addressed by our research activity at the computer vision laboratory. The report has been written based on a request of, and supported by, FOI.

  • 44.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Incremental computation of feature hierarchies2010In: Pattern Recognition: 32nd DAGM Symposium, Darmstadt, Germany, September 22-24, 2010. Proceedings / [ed] Michael Goesele, Stefan Roth, Arjan Kuijper, Bernt Schiele and Konrad Schindler, Springer Berlin/Heidelberg, 2010, p. 523-532Conference paper (Refereed)
    Abstract [en]

    Feature hierarchies are essential to many visual object recognition systems and are well motivated by observations in biological systems. The present paper proposes an algorithm to incrementally compute feature hierarchies. The features are represented as estimated densities, using a variant of local soft histograms. The kernel functions used for this estimation in conjunction with their unitary extension establish a tight frame and results from framelet theory apply. Traversing the feature hierarchy requires resampling of the spatial and the feature bins. For the resampling, we derive a multi-resolution scheme for quadratic spline kernels and we derive an optimization algorithm for the upsampling. We complement the theoretic results by some illustrative experiments, consideration of convergence rate and computational efficiency.

  • 45.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    On Second Order Operators and Quadratic Operators2008In: Proceedings - International Conference on Pattern Recognition, IEEE , 2008, p. 1-4Conference paper (Refereed)
    Abstract [en]

    In pattern recognition, computer vision, and image processing, many approaches are based on second order operators. Well-known examples are second order networks, the 3D structure tensor for motion estimation, and the Harris corner detector. A subset of second order operators are quadratic operators. It is lesser known that every second order operator can be written as a weighted quadratic operator. The contribution of this paper is to propose an algorithm for converting an arbitrary second order operator into a quadratic operator. We apply the method to several examples from image processing and machine learning. The advantages of the alternative implementation by quadratic operators is two-fold: The underlying linear operators allow new insights into the theory of the respective second order operators and replacing second order networks with sums of squares of linear networks reduces significantly the computational burden when the trained network is in operation phase.

  • 46.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering.
    On the Design of Two-Dimensional Polar Separable Filters2004In: EUSIPCO2004,2004, EURASIP , 2004, p. 417-Conference paper (Refereed)
  • 47.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    On the Relation Between Anisotropic Diffusion and Iterated Adaptive Filtering2008In: Pattern Recognition: 30th DAGM Symposium Munich, Germany, June 10-13, 2008 Proceedings / [ed] Gerhard Rigoll, Springer Berlin/Heidelberg, 2008, 1, , p. 436-445p. 436-445Conference paper (Refereed)
    Abstract [en]

    In this paper we present a novel numerical approximation scheme for anisotropic diffusion which is at the same time a special case of iterated adaptive filtering. By assuming a sufficiently smooth diffusion tensor field, we simplify the divergence term and obtain an evolution equation that is computed from a scalar product of diffusion tensor and the Hessian. We propose further a set of filters to approximate the Hessian on a minimized spatial support. On standard benchmarks, the resulting method performs in average nearly as good as the best known denoising methods from the literature, although it is significantly faster and easier to implement. In a GPU implementation video real-time performance is achieved for moderate noise levels.

  • 48.
    Felsberg, Michael
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Optical flow estimation from monogenic phase.2006In: International Workshop on Complex Motion,2004, Springer , 2006Conference paper (Refereed)
  • 49.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Probabilistic and biologically inspired feature representations2018Book (Refereed)
    Abstract [en]

    Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

  • 50.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Spatio-featural scale-space2009Conference paper (Other academic)
    Abstract [en]

    Linear scale-space theory is the fundamental building block for many approaches to image processing like pyramids or scale-selection. However, linear smoothing does not preserve image structures very well and thus non-linear techniques are mostly applied for image enhancement. A different perspective is given in the framework of channel-smoothing, where the feature domain is not considered as a linear space, but it is decomposed into local basis functions. One major drawback is the larger memory requirement for this type of representation, which is avoided if the channel representation is subsampled in the spatial domain. This general type of feature representation is called channel-coded feature map (CCFM) in the literature and a special case using linear channels is the SIFT descriptor. For computing CCFMs the spatial resolution and the feature resolution need to be selected.

    In this paper, we focus on the spatio-featural scale-space from a scale-selection perspective. We propose a coupled scheme for selecting the spatial and the featural scales. The scheme is based on an analysis of lower bounds for the product of uncertainties, which is summarized in a theorem about a spatio-featural uncertainty relation. As a practical application of the derived theory, we reconstruct images from CCFMs with resolutions according to our theory. The results are very similar to the results of non-linear evolution schemes, but our algorithm has the fundamental advantage of being non-iterative. Any level of smoothing can be achieved with about the same computational effort.

1234 1 - 50 of 188
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf