liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bialowas, Sonja
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Hagbom, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Nordgren, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Sharma, Sumit
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-­Eric
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Svensson, Lennart
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Intracellularly expressed rotavirus NSP4 stimulates release of serotonin (5-HT) from human enterochromaffin cellsManuscript (preprint) (Other academic)
    Abstract [en]

    Rotavirus (RV) is associated with diarrhoea and vomiting, but the mechanisms behind these symptoms remain unresolved. While RV have been shown to infect and stimulate secretion of serotonin (5-hydroxytryptamine; 5-HT) from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice, it remains to identify which intracellularly expressed viral protein (VP) being responsible for this novel property.

    To address this issue, human EC cells were transfected with small interfering RNA (siRNA) targeting the structural (VP4, VP6 and VP7) and the non-structural protein 4 (NSP4) followed by infection with Rhesus rotavirus (RRV). siRNA specific to NSP4 (siRNANSP4) significantly attenuated secretion of 5-HT compared to siRNAVP4, siRNAVP6 , siRNAVP7 and non-targeting (Nt) siRNAnt. Intracellular calcium clamping with BABTA/AM showed that intracellularly expressed NSP4-stimulated secretion of 5-HT from EC cells was calcium-dependent. Furthermore RV down-regulated the 5-HT transporter (SERT) mRNA in ileum but not tryptophan hydroxylase 1 (TPH1) mRNA the rate-limiting enzyme for 5-HT synthesis. The unaffected expression of TPH1 mRNA in the intestinal segments suggests that release of 5- HT primarily originates from pre-made 5-HT rather than from newly synthesised 5-HT mRNA. Moreover, down-regulation of SERT mRNA in ileum presumably resulted in reduced re- uptake of 5-HT by SERT to EC cells and thus increased extracellular 5-HT in the small intestine. Moreover, 7/7 infant mice responded following intraperitoneal administration of 5-HT with rapid (<30 min) diarrhoea in dose-dependent manner. In the light of these results and the fact that both 5-HT and NSP4 can induce diarrhoea in mice, a disease mechanism to RV diarrhoea is proposed.

  • 2.
    Hagbom, Marie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Molecular Virology. Linköping University, Faculty of Health Sciences.
    Istrate, Claudia
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Clinical Microbiology.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Karlsson, Thommie
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology.
    Rodriguez-Diaz, Jesus
    University of Valencia.
    Buesa, Javier
    University of Valencia.
    Taylor, John A
    University of Auckland.
    Loitto, Vesa
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Ahlman, Hakan
    University of Gothenburg.
    Lundgren, Ove
    University of Gothenburg.
    Svensson, Lennart
    Linköping University, Department of Clinical and Experimental Medicine, Molecular Virology. Linköping University, Faculty of Health Sciences.
    Rotavirus Stimulates Release of Serotonin (5-HT) from Human Enterochromaffin Cells and Activates Brain Structures Involved in Nausea and Vomiting2011In: PLOS PATHOGENS, ISSN 1553-7366, Vol. 7, no 7Article in journal (Refereed)
    Abstract [en]

    otavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves connected to nucleus of the solitary tract (NTS) and area postrema in the brain stem, structures associated with nausea and vomiting. Our experiments revealed that RV can infect and replicate in human EC tumor cells ex vivo and in vitro and are localized to both EC cells and infected enterocytes in the close vicinity of EC cells in the jejunum of infected mice. Purified NSP4, but not purified virus particles, evoked release of 5-HT within 60 minutes and increased the intracellular Ca(2+) concentration in a human midgut carcinoid EC cell line (GOT1) and ex vivo in human primary carcinoid EC cells concomitant with the release of 5-HT. Furthermore, NSP4 stimulated a modest production of inositol 1,4,5-triphosphate (IP(3)), but not of cAMP. RV infection in mice induced Fos expression in the NTS, as seen in animals which vomit after administration of chemotherapeutic drugs. The demonstration that RV can stimulate EC cells leads us to propose that RV disease includes participation of 5-HT, EC cells, the enteric nervous system and activation of vagal afferent nerves to brain structures associated with nausea and vomiting. This hypothesis is supported by treating vomiting in children with acute gastroenteritis with 5-HT(3) receptor antagonists.

  • 3.
    Holm, Angelika
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Vikström, Elena
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages2015In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 6, no 915Article in journal (Refereed)
    Abstract [en]

    Pseudomonas aeruginosa controls production of its multiple virulence factors and biofilm development via the quorum sensing (QS) system. QS signals also interact with and affect the behavior of eukaryotic cells. Host water homeostasis and aquaporins (AQP) are essential during pathological conditions since they interfere with the cell cytoskeleton and signaling, and hereby affect cell morphology and functions. We investigated the contribution of F? aeruginosa QS genes lasl/rhIl to phagocytosis, cell morphology, AQP9 expression, and distribution in human macrophages, using immunoblotting, confocal, and nanoscale imaging. Wild type F? aeruginosa with a functional QS system was a more attractive prey for macrophages than the lasl/rhIl mutant lacking the production of QS molecules, 30-C-12-HSL, and C-4 -HSL, and associated virulence factors. The F? aeruginosa infections resulted in elevated AQP9 expression and relocalization to the leading and trailing regions in macrophages, increased cell area and length; bacteria with a functional QS system lasl/rhIl achieved stronger responses. We present evidence for a new role of water fluxes via AQP9 during bacteria macrophage interaction and for the QS system as an important stimulus in this process. These novel events in the interplay between F? aeruginosa and macrophages may influence on the outcome of infection, inflammation, and development of disease.

  • 4.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Water Fluxes and Cell Migration: How Aquaporin 9 Controls Cell Shape and Motility2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Prerequisites for all modes of cell migration are cell-substratum interactions that require a sophisticated interplay of membrane dynamics and cytoskeletal rearrangement. Generally, a migrating cell is polarized with a distinct rear and front, from which it extends a wide and thin membrane protrusion- lamellipodium, small fingerlike projections- filopodia, and membrane blisters- blebs. The development of these structures is primarily driven by cytoskeletal contractions and actin polymerization, which are under regulation of several actin-binding proteins and the small GTPases Cdc42, Rac and Rho. Lamellipodia and filopodia are assumed to arise from polymerizing actin, pushing the membrane forward through a Brownian-ratchet mechanism. However, other models based on shifts in the local hydrostatic pressure have also been suggested since blebs are initially void of actin. Recently, fluxes of water through membrane-anchored water channels, aquaporins (AQPs), have been implicated in cell motility, while they appeared to localize to lamellipodia and facilitate cell locomotion. Indeed, expression of AQP9 was shown to induce filopodia in fibroblasts. Here, we have focused on the effects of AQP9 on cell morphology and motility. By using primarily live cell imaging of GFP-AQP9 and other cytoskeletal components we found that AQP9: (i) enhances cell polarization and migration in a Rac1 and serine11 phosphorylation-dependent manner in neutrophils, (ii) induces and accumulates in filopodia, before actin polymerization, (iii) locally deforms the membrane upon rapid reductions osmolarity, (iv) accumulates in the cell membrane underlying bleb development, (v) induces multiple protrusions and thereby impairs the intrinsic directionality, and (vi) facilitates epithelial wound closure through a mechanism involving swelling and expansion of the monolayer. Based on these findings, we have presented models for how water fluxes through AQPs aids actin polymerization in the formation of membrane protrusions. In summary, these models rely on localized accumulation of ion and water channels that control the influx of water and thereby the buildup of a hydrostatic pressure between the membrane and the cytoskeleton. Upon reaching a critical pressure, it will dislocate the membrane from the cytoskeleton and force it to protrude outwards. Moreover, this will promote a local cytoplasmic gel-to-sol transformation, which facilitates diffusion of cytoskeletal reactants. Hereby, we can furthermore assign to filopodia a role as osmo-sensors, protecting the cell from different osmotic loads. In addition, we have postulated a novel model for wound healing involving force generation by cell swelling. Taken together, this thesis provides the field of cell migration with solid evidence for pivotal roles of water fluxes through AQP9 in particular, but most likely AQPs in general, during cell locomotion and localized volume control.

    List of papers
    1. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization
    Open this publication in new window or tab >>Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization
    Show others...
    2011 (English)In: Journal of Leukocyte Biology, ISSN 0741-5400, E-ISSN 1938-3673, Vol. 90, no 5, p. 963-973Article in journal (Refereed) Published
    Abstract [en]

    Neutrophils are of prime importance in the host innate defense against invading microorganisms by using two primary mechanisms-locomotion toward and phagocytosis of the prey. Recent research points to pivotal roles for water channels known as AQPs in cell motility. Here, we focused on the role of AQP9 in chemoattractant-induced polarization and migration of primary mouse neutrophils and neutrophil-like HL60 cells. We found that AQP9 is phosphorylated downstream of fMLFR or PMA stimulation in primary human neutrophils. The dynamics of AQP9 were assessed using GFP-tagged AQP9 constructs and other fluorescent markers through various live-cell imaging techniques. Expression of WT or the phosphomimic S11D AQP9 changed cell volume regulation as a response to hyperosmotic changes and enhanced neutrophil polarization and chemotaxis. WT AQP9 and S11D AQP9 displayed a very dynamic distribution at the cell membrane, whereas the phosphorylation-deficient S11A AQP9 failed to localize to the plasma membrane. Furthermore, we found that Rac1 regulated the translocation of AQP9 to the plasma membrane. Our results show that AQP9 plays an active role in neutrophil volume regulation and migration. The display of AQP9 at the plasma membrane depends on AQP9 phosphorylation, which appeared to be regulated through a Rac1-dependent pathway.

    Place, publisher, year, edition, pages
    Society for Leukocyte Biology, 2011
    Keywords
    AQP9, cell migration, Rac, water fluxes, osmosis, hydrostatic pressure
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-72257 (URN)10.1189/jlb.0910540 (DOI)000296716000014 ()
    Note
    Funding Agencies|Swedish Research Council-Medicine|2006-74991007-34832010-3045|Swedish Research Council Natural Sciences|2009-6649|European Sciences Foundation (TraPPs-Euromembrane)||CIHR|MOP-86550|CIHR Group||Available from: 2011-11-24 Created: 2011-11-24 Last updated: 2017-12-08
    2. Fluxes of Water through Aquaporin 9 Weaken Membrane-Cytoskeleton Anchorage and Promote Formation of Membrane Protrusions
    Open this publication in new window or tab >>Fluxes of Water through Aquaporin 9 Weaken Membrane-Cytoskeleton Anchorage and Promote Formation of Membrane Protrusions
    Show others...
    2013 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 4, p. e59901-Article in journal (Refereed) Published
    Abstract [en]

    All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs) has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i) AQP9 induced and accumulated in filopodia, (ii) AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii) minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-90022 (URN)10.1371/journal.pone.0059901 (DOI)000318840100033 ()
    Available from: 2013-03-15 Created: 2013-03-15 Last updated: 2017-12-06Bibliographically approved
    3. Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing
    Open this publication in new window or tab >>Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing
    Show others...
    2013 (English)In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 430, no 3, p. 993-998Article in journal (Refereed) Published
    Abstract [en]

    Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known about the impact on migrating epithelial sheets during wound healing and epithelial renewal. Here, we investigate and compare the effects of AQP9 on single cell and epithelial sheet migration. To achieve this, MDCK-1 cells stably expressing AQP9 were subjected to migration assessment. We found that AQP9 facilitated cell locomotion at both the single and multi-cellular level. Furthermore, we identified major differences in the monolayer integrity and cell size upon expression of AQP9 during epithelial sheet migration, indicating a rapid volume-regulatory mechanism. We suggest a novel mechanism for epithelial wound healing based on AQP-induced swelling and expansion of the monolayer.

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    Cell migration, Aquaporins, AQP9, Wound healing, Cell motility
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-89749 (URN)10.1016/j.bbrc.2012.11.125 (DOI)000314376100021 ()
    Note

    Funding Agencies|Swedish Research Council for Medicine and Health|2007-34832009-66492010-3045|

    Available from: 2013-03-05 Created: 2013-03-05 Last updated: 2017-12-06
  • 5.
    Karlsson, Thommie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Bolshakova, Anastasia
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magalhães, Marco A.O
    Faculty of Dentistry, University of Toronto, Toronto, Canada.
    Loitto, Vesa
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Fluxes of Water through Aquaporin 9 Weaken Membrane-Cytoskeleton Anchorage and Promote Formation of Membrane Protrusions2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 4, p. e59901-Article in journal (Refereed)
    Abstract [en]

    All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs) has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i) AQP9 induced and accumulated in filopodia, (ii) AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii) minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  • 6.
    Karlsson, Thommie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Glogauer, Michael
    University of Toronto.
    Ellen, Richard P
    University of Toronto.
    Loitto, Vesa
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magalhaes, Marco A O
    University of Toronto.
    Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization2011In: Journal of Leukocyte Biology, ISSN 0741-5400, E-ISSN 1938-3673, Vol. 90, no 5, p. 963-973Article in journal (Refereed)
    Abstract [en]

    Neutrophils are of prime importance in the host innate defense against invading microorganisms by using two primary mechanisms-locomotion toward and phagocytosis of the prey. Recent research points to pivotal roles for water channels known as AQPs in cell motility. Here, we focused on the role of AQP9 in chemoattractant-induced polarization and migration of primary mouse neutrophils and neutrophil-like HL60 cells. We found that AQP9 is phosphorylated downstream of fMLFR or PMA stimulation in primary human neutrophils. The dynamics of AQP9 were assessed using GFP-tagged AQP9 constructs and other fluorescent markers through various live-cell imaging techniques. Expression of WT or the phosphomimic S11D AQP9 changed cell volume regulation as a response to hyperosmotic changes and enhanced neutrophil polarization and chemotaxis. WT AQP9 and S11D AQP9 displayed a very dynamic distribution at the cell membrane, whereas the phosphorylation-deficient S11A AQP9 failed to localize to the plasma membrane. Furthermore, we found that Rac1 regulated the translocation of AQP9 to the plasma membrane. Our results show that AQP9 plays an active role in neutrophil volume regulation and migration. The display of AQP9 at the plasma membrane depends on AQP9 phosphorylation, which appeared to be regulated through a Rac1-dependent pathway.

  • 7.
    Karlsson, Thommie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Lagerholm, Christoffer B.
    University of So Denmark, Denmark .
    Vikström, Elena
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Loitto, Vesa
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing2013In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 430, no 3, p. 993-998Article in journal (Refereed)
    Abstract [en]

    Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known about the impact on migrating epithelial sheets during wound healing and epithelial renewal. Here, we investigate and compare the effects of AQP9 on single cell and epithelial sheet migration. To achieve this, MDCK-1 cells stably expressing AQP9 were subjected to migration assessment. We found that AQP9 facilitated cell locomotion at both the single and multi-cellular level. Furthermore, we identified major differences in the monolayer integrity and cell size upon expression of AQP9 during epithelial sheet migration, indicating a rapid volume-regulatory mechanism. We suggest a novel mechanism for epithelial wound healing based on AQP-induced swelling and expansion of the monolayer.

  • 8.
    Karlsson, Thommie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Musse, Farah
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Vikström, Elena
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    N-Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling2012In: Journal of Leukocyte Biology, ISSN 0741-5400, E-ISSN 1938-3673, Vol. 91, no 1, p. 15-26Article in journal (Refereed)
    Abstract [en]

    In gram-negative bacteria, cell-cell communication based on HSL QS molecules is known to coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human immune cell behavior. Using a Transwell migration assay, we found that human primary neutrophils are strongly stimulated by 3O-C(12)-HSL and -C(10)-HSL but not C(4)-HSL in a concentration-dependent manner. Moreover, 3O-C(12)-HSL and -C(10)-HSL activate PLC gamma 1 but not -gamma 2, mobilize intracellular calcium, and up-regulate IP(3)R. These changes were paralleled by F-actin accumulation, primarily in the leading edge of neutrophils, as evidenced by phalloidin staining and confocal microscopy. F- and G-actin isolation and quantification by immunoblotting revealed that the F/G-actin ratio was increased significantly after treatment with all three HSLs. Furthemore, 3O-C(12)-HSL- and 3O-C(10)-HSL treatment resulted in phosphorylation of Rac1 and Cdc42. In contrast, C(4)-HSL had negligible influence on the phosphorylation status of PLC and Rac1/Cdc42 and failed to attract neutrophils and induce calcium release. The calcium inhibitor thapsigargin, which blocks ER calcium uptake, strongly prevented neutrophil migration toward 3O-C(12)-HSL and -C(10)-HSL. These findings show that the bacterial QS molecules 3O-C(12)-HSL and -C(10)-HSL may attract human neutrophils to the sites of bacterial infection and developing biofilms. Indeed, recognition of HSL QS signals by neutrophils may play a critical role in their recruitment during infections.

  • 9.
    Karlsson, Thommie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Turkina, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Yakymenko, Olena
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Vikström, Elena
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    The Pseudomonas aeruginosa N-Acylhomoserine Lactone Quorum Sensing Molecules Target IQGAP1 and Modulate Epithelial Cell Migration2012In: PLOS PATHOGENS, ISSN 1553-7374, Vol. 8, no 10Article in journal (Refereed)
    Abstract [en]

    Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxododecanoyl- L-homoserine lactone 3O-C-12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C-12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C-12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C-12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C-12-HSL with a sensor bioassay. Moreover, 3O-C-12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P. aeruginosa 3O-C-12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C-12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial - human cell communication.

  • 10.
    Loitto, Vesa
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology . Linköping University, Faculty of Health Sciences.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Magnusson, Karl-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology . Linköping University, Faculty of Health Sciences.
    Water Flux in Cell Motility: Expanding the Mechanisms of Membrane Protrusion2009In: CELL MOTILITY AND THE CYTOSKELETON, ISSN 0886-1544, Vol. 66, no 5, p. 237-247Article, review/survey (Refereed)
    Abstract [en]

    Transmembrane water fluxes through aquaporins (AQPs) are suggested to play, pivotal roles in cell polarization and directional cell motility. Local dilution by W water influences the dynamics of the subcortical actin polymerization and directs the formation of nascent membrane protrusions. In this paper. recent evidence is discussed in support of such a central role of AQP in membrane protrusion formation, and cell migration as a basis for our Understanding AQP9 Underlying molecular mechanisms of directional motility. Specifically. AQP9 in a physiological context controls transmembrane water fluxes driving, membrane protrusion formation, as an initial cellular response to a chemoattractant or other migratory signals. The importance of AQP-facilitated water fluxes in directional cell motility is underscored the observation that blocking or modifying specific sites in AQP9 also interferes with the molecular machinery that govern actin-mediated cellular shape changes. Cell Motil.

  • 11.
    Magnusson, Karin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Cieslar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Institute of Automatic Control, Silesian University of of TechnologyGliwice, Poland.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology. Carl Zeiss AB, Sweden.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Application Specialist Confocal Microscopy at Leica MicrosystemsIL, United States.
    Los, Marek Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Department of Pathology, Pomeranian Medical UniversitySzczecin, Poland.
    Kågedal, Bertil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
    Jonasson, Jon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Differential vital staining of normal fibroblasts and melanoma cells by an anionic conjugated polyelectrolyte2015In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 87, no 3, p. 262-272Article in journal (Refereed)
    Abstract [en]

    Molecular probes for imaging of live cells are of great interest for studying biological and pathological processes. The anionic luminescent conjugated polythiophene (LCP) polythiophene acetic acid (PTAA), has previously been used for vital staining of cultured fibroblasts as well as transformed cells with results indicating differential staining due to cell phenotype. Herein, we investigated the behavior of PTAA in two normal and five transformed cells lines. PTAA fluorescence in normal cells appeared in a peripheral punctated pattern whereas the probe was more concentrated in a one-sided perinuclear localization in the five transformed cell lines. In fibroblasts, PTAA fluorescence was initially associated with fibronectin and after 24 h partially localized to lysosomes. The uptake and intracellular target in malignant melanoma cells was more ambiguous and the intracellular target of PTAA in melanoma cells is still elusive. PTAA was well tolerated by both fibroblasts and melanoma cells, and microscopic analysis as well as viability assays showed no signs of negative influence on growth. Stained cells maintained their proliferation rate for at least 12 generations. Although the probe itself was nontoxic, photoinduced cellular toxicity was observed in both cell lines upon irradiation directly after staining. However, no cytotoxicity was detected when the cells were irradiated 24 h after staining, indicating that the photoinduced toxicity is dependent on the cellular location of the probe. Overall, these studies certified PTAA as a useful agent for vital staining of cells, and that PTAA can potentially be used to study cancer-related biological and pathological processes.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf