liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Davis, Robert J
    et al.
    Sandia National Labs.
    Lloyd, Matthew T
    National Renewable Energy Lab.
    Ferreira, Summer R
    Sandia National Labs.
    Bruzek, Matthew J
    University of Kentucky.
    Watkins, Scott E
    CSIRO Mat Science and Engn.
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Sehati, Parisa
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Anthony, John E
    University of Kentucky.
    Hsu, Julia W P
    Sandia National Labs.
    Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment2011In: JOURNAL OF MATERIALS CHEMISTRY, ISSN 0959-9428, Vol. 21, no 6, p. 1721-1729Article in journal (Refereed)
    Abstract [en]

    Device function in organic electronics is critically governed by the transport of charge across interfaces of dissimilar materials. Accurate measurements of energy level positions in organic electronic devices are therefore necessary for assessing the viability of new materials and optimizing device performance. In contrast to established methods that are used in solution or vacuum environments, here we combine Kelvin probe measurements performed in ambient environments to obtain work function values with photoelectron spectroscopy in air to obtain ionization potential, so that a complete energy level diagram for organic semiconductors can be determined. We apply this new approach to study commonly used electron donor and acceptor materials in organic photovoltaics (OPV), including poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61 butyric acid methyl ester (PCBM), and ZnO, as well as examine new materials. Band alignments across the entire OPV devices are constructed and compared with actual device performance. The ability to determine interfacial electronic properties in the devices enables us to answer the outstanding question: why previous attempts to make OPV devices using 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene as the electron donor were not successful.

  • 2.
    Gadisa, Abay
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Tvingstedt, Kristofer
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Admassie, Shimelis
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Andersson, Mats R.
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, Göteborg, Sweden.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Transparent polymer cathode for organic photovoltaic devices2006In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 156, no 16-17, p. 1102-1107Article in journal (Refereed)
    Abstract [en]

    We demonstrate a prototype solar cell with a transparent polymer cathode, and indium-tin-oxide (ITO)/poly (3, 4-ethylene dioxythiophene)-poly (styrene sulphonate) (PEDOT:PSS) anode. As an active layer, thin film of a bulk heterojunction of polyfluorene copolymer poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4′,7′-di-2thienyl-2′,1′3′-benzothiadiazole)] (APFO-3) and an electron acceptor molecule [6] and [6]-phenyl-C61-butyric acid methyl ester (PCBM) (1:4 wt.) was sandwiched between the two transparent polymer electrodes. The cathode is another form of PEDOT formed by vapor phase polymerised PEDOT (VPP PEDOT) of conductivity 102–103 S/cm. The cathode is supported on an elastomeric substrate, and forms a conformal contact to the APFO-3/PCBM blend. Transparent solar cells are useful for building multilayer and tandem solar cells.

  • 3.
    Jakobsson, Fredrik L. E.
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Kanciurzewska, Anna
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Towards all-plastic flexible light emitting diodes2006In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 433, no 1-3, p. 110-114Article in journal (Refereed)
    Abstract [en]

    All-plastic light emitting diodes require the design and fabrication of low work function plastic electrodes. Here, we show that the work function of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) can be decreased from 4.8 eV to 3.9 eV by surface reaction with the strong electron-donor tetrakis(dimethylamino)ethylene (TDAE). The surface modification was characterized by photoelectron spectroscopy and optical spectroscopy. The low work function plastic electrode was used in a first prototype for all-plastic light emitting diodes.

  • 4. Order onlineBuy this publication >>
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Interface Engineering in Organic Electronics2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Organic electronics is a field covering all applications and devices where one or several of the active components are made of organic material, such as organic light emitting diodes, organic solar cells, organic thin film transistors, organic magnets for spintronics etc. In all of the applications mentioned above, transport of charges across both inorganic/organic and organic/organic interfaces play a key role for device performance. In order to achieve high efficiencies and longer life-times, proper matching of the electronic energy levels of the different materials is needed.

    The aim of the research presented in this thesis has been to explore different routes to optimize interface energetics and gain deeper knowledge of the mechanisms that govern charge transport over the interface. Photoelectron spectroscopy (PES) is a method well suited to study both interactions between different materials taking place at surfaces as well as interface energetics.

    One way to achieve proper matching of interfaces energy levels is by adding a dipole layer. In the three first papers presented in the thesis, the method of adding a monolayer of small organic molecules to change the work function of the surface is investigated. We start with a model system consisting of a nickel surface and PPDA molecules where we have strong interaction and mixing of orbitals between the molecule and the metal surface. The second system consists of a gold surface and TDAE molecules with weaker interaction with integer electron transfer and finally in the third paper an organic surface VPP-PEDOT-Tos is modified, with TDAE, to create a transparent low work function organic electrode. In the fourth paper, we focus on gaining deeper understanding of the Integer Charge Transfer (ICT) model and the mechanisms governing the alignment of energy levels at organic/(in)organic interfaces and in the fifth paper we continue to challenge this model by using it to predict the behavior of a bilayer device, in terms of energy level alignment.

    List of papers
    1. Characterization of the interface dipole at the paraphenylenediamine-nickel interface: A joint theoretical and experimental study
    Open this publication in new window or tab >>Characterization of the interface dipole at the paraphenylenediamine-nickel interface: A joint theoretical and experimental study
    Show others...
    2005 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 122, no 8, p. 84712-Article in journal (Refereed) Published
    Abstract [en]

    In organic-based (opto)electronic devices, charge injection into conjugated materials is governed to a large extent by the metal-organic interface dipole. Controlling the injection of charges requires a better understanding of the fundamental origin of the interface dipole. In this context, photoelectron spectroscopies and density functional theory calculations are used to investigate the interaction between para-phenylenediamine (PPDA), an electron donor, and a polycrystalline nickel surface. The interface dipole formed upon chemisorption of one PPDA monolayer strongly modifies the work function of the nickel surface from 5.10 to 3.55 eV. The work function decrease of 1.55 eV is explained by the electron-donor character of PPDA and the modification of the electronic density at the metal surface. PPDA monolayers are composed of tilted molecules interacting via the nitrogen lone-pair and PPDA molecules chemisorbed parallel to the surface via their π-electron density. Annealing the monolayer leads to dehydrogenation of PPDA activated by the nickel surface, as found for other amines.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-24542 (URN)10.1063/1.1851507 (DOI)6701 (Local ID)6701 (Archive number)6701 (OAI)
    Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2017-12-13
    2. Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface
    Open this publication in new window or tab >>Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface
    Show others...
    2008 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 92, no 16, p. 163302-1-163302-3Article in journal (Refereed) Published
    Abstract [en]

    In organic-based electronics, interfacial properties have a profound impact on device performance. The lineup of energy levels is usually dependent on interface dipoles, which may arise from charge transfer reactions. In many applications, metal-organic junctions are prepared under ambient conditions, where direct overlap of the organic system from the metal bands is prevented due to presence of oxides and/or hydrocarbons. We present direct experimental and theoretical evidence showing that the interface energetic for such systems is governed by exchange of an integer amount of electrons.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20776 (URN)10.1063/1.2912818 (DOI)
    Available from: 2009-09-18 Created: 2009-09-18 Last updated: 2017-12-13
    3. Transparent low-work-function indium tin oxide electrode obtained by molecular scale interface engineering
    Open this publication in new window or tab >>Transparent low-work-function indium tin oxide electrode obtained by molecular scale interface engineering
    Show others...
    2004 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 85, no 9, p. 1616-1618Article in journal (Refereed) Published
    Abstract [en]

    Transparent low-work-function indium tin oxide (ITO) electrode was obtained by using molecular scale interface engineering. The modified ITO surface may be used as electron injecting electrode in polymer light-emitting devices. ITO surfaces, exposed to TDAE molecules, were found to be stable upon exposure to air, and to mild annealing. Photoelectron spectroscopy measurements show that the low-work-function of the modified electrode remains upon exposure to air in gentle annealing.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-45659 (URN)10.1063/1.1785873 (DOI)
    Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13
    4. Self assembled monolayer engineered interfaces for determination of charge transfer and charge separated states
    Open this publication in new window or tab >>Self assembled monolayer engineered interfaces for determination of charge transfer and charge separated states
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Most interfaces in organic electronics consists of weakly interacting organic/(in)organic material interfaces where the interaction is limited to charge transfer via tunnelling. In order to optimize device structure and performance, it is of great importance to understand the rules that govern the energy level alignment at those interfaces. The integer charge transfer (ICT) model is a model used to explain and predict the interaction and energy level alignment behaviour from the so-called integer charge transfer energy, EICT values. In this paper we investigate two phenomena that could influence the absolute value of EICT at hybrid organic and organic-organic interfaces and provide experimentally-derived quantitative data on the strength of the effects.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-72233 (URN)
    Available from: 2011-11-23 Created: 2011-11-23 Last updated: 2018-10-08Bibliographically approved
    5. Energy level alignment at metal-organic and organic-organic interfaces with Alq3 and NTCDA
    Open this publication in new window or tab >>Energy level alignment at metal-organic and organic-organic interfaces with Alq3 and NTCDA
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The energy level alignment behavior of the widely used materials tris-(8-hydroxyquinoline)aluminum (Alq3) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The Integer Charge Transfer (ICT) model is successfully used to predict their overall behavior at weakly-interacting hybridorganic and organic-organic interfaces, including NTCDA/Alq3 bilayers. The EICT- of NTCDA is measured to be 4.35 eV and the EICT+ of Alq3 is found to be 4.3 eV. The Alq3 films furthermore feature an interface dipole in absence of charge transfer due to the intrinsic dipole of the molecule and ordering effects.

    Keywords
    energy level alignment, interface properties, organic electronics, Fermi level pinning, bilayer structure, giant surface potential
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-72234 (URN)
    Available from: 2011-11-23 Created: 2011-11-23 Last updated: 2011-11-23Bibliographically approved
  • 5.
    Lindell, Linda
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Molecular scale interface engineering2007Licentiate thesis, comprehensive summary (Other academic)
  • 6.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Energy level alignment at metal-organic and organic-organic interfaces with Alq3 and NTCDAManuscript (preprint) (Other academic)
    Abstract [en]

    The energy level alignment behavior of the widely used materials tris-(8-hydroxyquinoline)aluminum (Alq3) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The Integer Charge Transfer (ICT) model is successfully used to predict their overall behavior at weakly-interacting hybridorganic and organic-organic interfaces, including NTCDA/Alq3 bilayers. The EICT- of NTCDA is measured to be 4.35 eV and the EICT+ of Alq3 is found to be 4.3 eV. The Alq3 films furthermore feature an interface dipole in absence of charge transfer due to the intrinsic dipole of the molecule and ordering effects.

  • 7.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Burquel, A.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Jakobsson, Fredrik
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Lemaur, V.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Lazzaroni, R.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Cornil, J.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Salaneck, William R
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Transparent, plastic, low-work-function poly(3,4-ethylenedioxythiophene) electrodes2006In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 18, no 18, p. 4246-4252Article in journal (Refereed)
    Abstract [en]

    Novel applications for flexible electronics, e.g., displays and solar cells, require fully flexible, transparent, stable, and low-work-function electrodes that can be manufactured via a low-cost process. Here, we demonstrate that surface chemistry constitutes a route to producing transparent low-work-function plastic electrodes. The work function of the conducting polymer poly(3,4-ethylenedioxythiophene)-tosylate, or PEDOT-Tos, is decreased by submonolayer surface redox reaction with a strong electron donor, tetrakis-(dimethylamino)ethylene (TDAE), allowing it to reach a work function of 3.8 eV. The interface formed between TDAE and PEDOT is investigated in a joint experimental and theoretical study using photoelectron spectroscopy and quantum chemical calculations. © 2006 American Chemical Society.

  • 8.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Cakir, Deniz
    University of Twente, The Netherlands.
    Brocks, Geert
    University of Twente, The Netherlands.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Role of intrinsic molecular dipole in energy level alignment at organic interfaces2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, no 22, p. 223301 -1-223301-4Article in journal (Refereed)
    Abstract [en]

    The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline)aluminum (Alq3) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq3 and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq3 feature a constant vacuum level shift of ∼0.2–0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq3 molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface.

  • 9.
    Lindell, Linda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    de Jong, Michel P
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Osikowicz, Wojciech
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Lazzaroni, R
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Salaneck, William R
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Crispin, Xavier
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Characterization of the interface dipole at the paraphenylenediamine-nickel interface: A joint theoretical and experimental study2005In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 122, no 8, p. 84712-Article in journal (Refereed)
    Abstract [en]

    In organic-based (opto)electronic devices, charge injection into conjugated materials is governed to a large extent by the metal-organic interface dipole. Controlling the injection of charges requires a better understanding of the fundamental origin of the interface dipole. In this context, photoelectron spectroscopies and density functional theory calculations are used to investigate the interaction between para-phenylenediamine (PPDA), an electron donor, and a polycrystalline nickel surface. The interface dipole formed upon chemisorption of one PPDA monolayer strongly modifies the work function of the nickel surface from 5.10 to 3.55 eV. The work function decrease of 1.55 eV is explained by the electron-donor character of PPDA and the modification of the electronic density at the metal surface. PPDA monolayers are composed of tilted molecules interacting via the nitrogen lone-pair and PPDA molecules chemisorbed parallel to the surface via their π-electron density. Annealing the monolayer leads to dehydrogenation of PPDA activated by the nickel surface, as found for other amines.

  • 10.
    Lindell, Linda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Jakobsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Osikowicz, Wojciech
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Andersson, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Salaneck, William R
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Cornil, Jerome
    Crispin, Xavier
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Towards Transparent Inorganic and Plastic Low-Workfunction Electrodes2005In: MRS Fall Meeting,2005, 2005Conference paper (Refereed)
  • 11.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Unge, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics . Linköping University, The Institute of Technology.
    Osikowicz, Wojciech
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Stafström, Sven
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics . Linköping University, The Institute of Technology.
    Salaneck, William R
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    de Jong, Michael P
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 92, no 16, p. 163302-1-163302-3Article in journal (Refereed)
    Abstract [en]

    In organic-based electronics, interfacial properties have a profound impact on device performance. The lineup of energy levels is usually dependent on interface dipoles, which may arise from charge transfer reactions. In many applications, metal-organic junctions are prepared under ambient conditions, where direct overlap of the organic system from the metal bands is prevented due to presence of oxides and/or hydrocarbons. We present direct experimental and theoretical evidence showing that the interface energetic for such systems is governed by exchange of an integer amount of electrons.

  • 12.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Vahlberg, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, The Institute of Technology.
    Self assembled monolayer engineered interfaces for determination of charge transfer and charge separated statesManuscript (preprint) (Other academic)
    Abstract [en]

    Most interfaces in organic electronics consists of weakly interacting organic/(in)organic material interfaces where the interaction is limited to charge transfer via tunnelling. In order to optimize device structure and performance, it is of great importance to understand the rules that govern the energy level alignment at those interfaces. The integer charge transfer (ICT) model is a model used to explain and predict the interaction and energy level alignment behaviour from the so-called integer charge transfer energy, EICT values. In this paper we investigate two phenomena that could influence the absolute value of EICT at hybrid organic and organic-organic interfaces and provide experimentally-derived quantitative data on the strength of the effects.

  • 13.
    Lindell, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Vahlberg, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Self-assembled monolayer engineered interfaces: Energy level alignment tuning through chain length and end-group polarity2015In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 204, p. 140-144Article in journal (Refereed)
    Abstract [en]

    We explore the different mechanisms through which self-assembled monolayers can tailor energy level alignment at metal-organic semiconductor interfaces. We show that the large work function variation that can be induced by the self-assembled monolayer on gold has limited ability to tailor the interface energy level alignment of a subsequent organic semiconductor overlayer. (C) 2015 Elsevier B.V. All rights reserved.

  • 14.
    Osikowicz, Wojciech
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Crispin, Xavier
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Tengstedt, Carl
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Lindell, Linda
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Kugler, Thomas
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Salaneck, William R
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Transparent low-work-function indium tin oxide electrode obtained by molecular scale interface engineering2004In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 85, no 9, p. 1616-1618Article in journal (Refereed)
    Abstract [en]

    Transparent low-work-function indium tin oxide (ITO) electrode was obtained by using molecular scale interface engineering. The modified ITO surface may be used as electron injecting electrode in polymer light-emitting devices. ITO surfaces, exposed to TDAE molecules, were found to be stable upon exposure to air, and to mild annealing. Photoelectron spectroscopy measurements show that the low-work-function of the modified electrode remains upon exposure to air in gentle annealing.

  • 15.
    Sehati, Parisa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Andersson, Lars Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Energy-Level Alignment at Metal-Organic and Organic-Organic Interfaces in Bulk-Heterojunction Solar Cells2010In: IEEE Journal of Selected Topics in Quantum Electronics, ISSN 1077-260X, E-ISSN 1558-4542, Vol. 16, no 6, p. 1718-1724Article in journal (Refereed)
    Abstract [en]

    Ultraviolet photoelectron spectroscopy measurements in combination with the integer charge transfer (ICT) model is used to obtain the energy-level alignment diagrams for two common types of bulk-heterojunction solar cell devices based on poly(3-hexylthiophene) or poly(2-methoxy-5-(3,7 -dimethyloctyloxy)- 1,4-phenylene vinylene) as the donor polymer and (6,6)phenyl- C61-butric-acid as the acceptor molecule. A ground-state interface dipole at the donor/acceptor heterojunction is present for both systems, but the origin of the interface dipole differs, quadrupole-induced in the case of poly(2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylene vinylene), and ICT state based for poly(3-hexylthiophene). The presence of bound electron-hole charge carriers (CT states) and/or interface dipoles are expected to enhance exciton dissociation into free charge carriers, thus reducing the probability that charges become trapped by Coulomb forces at the interface followed by recombination.

  • 16.
    Sinno, Hiam
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nguyen, Ha Tran
    University of Mons-UMONS, Belgium.
    Hägerström, Anders
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Lindell, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Coulembier, Olivier
    University of Mons-UMONS, Belgium.
    Dubois, Philippe
    University of Mons-UMONS, Belgium.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs2013In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 14, no 3, p. 790-796Article in journal (Refereed)
    Abstract [en]

    We report a method for inkjet-printing an organic semiconductor layer on top of the electrolyte insulator layer in polyelectrolyte-gated OFETs by using a surface modification treatment to overcome the underlying wettability problem at this interface. The method includes depositing an amphiphilic diblock copolymer (P3HT-b-PDMAEMA). This material is designed to have one set of blocks that mimics the hydrophobic properties of the semiconductor (poly(3-hexylthiophene) or P3HT), while the other set of blocks include polar components that improve adhesion to the polyelectrolyte insulator. Contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy confirm formation of the desired surface modification film. Successful inkjet printing of a smooth semiconductor layer allows us to manufacture complete transistor structures that exhibit low-voltage operation in the range of 1 V.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf