liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aberg, D
    et al.
    Royal Inst Technol, SE-16440 Kista, Sweden Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Hallen, A
    Royal Inst Technol, SE-16440 Kista, Sweden Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
    Svensson, BG
    Implantation temperature dependent deep level defects in 4H-SiC2001In: Materials Science Forum, Vols. 353-356, 2001, Vol. 353-3, p. 443-446Conference paper (Refereed)
    Abstract [en]

    Deep level transient spectroscopy spectra of the near Z-defect region (150-350K) were investigated for B implanted samples of low doses (10(8)-10(9) cm(-2)). For 300 degreesC implantation, a level at an energy of 0.41 eV below the conduction hand edge was found, referred to as the S-level. The S-center was shown to form in both implanted and electron irradiated 4H-SiC, either after room temperature (R.T.) implantation followed by mild heat treatments or lung R.T. storage (several months) or after 200-300 degreesC implantations/irradiations. The S-center was found to anneal out at temperatures above 250 degreesC.

  • 2.
    Bergman, JP
    et al.
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden ABB Corp, SE-72178 Vasteras, Sweden Okmet AB, SE-58183 Linkoping, Sweden.
    Jakobsson, H
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden ABB Corp, SE-72178 Vasteras, Sweden Okmet AB, SE-58183 Linkoping, Sweden.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Sridhara, S
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden ABB Corp, SE-72178 Vasteras, Sweden Okmet AB, SE-58183 Linkoping, Sweden.
    Pozina, Galia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Lendenmann, H
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden ABB Corp, SE-72178 Vasteras, Sweden Okmet AB, SE-58183 Linkoping, Sweden.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Characterisation and defects in silicon carbide2002In: Materials Science Forum, Vols. 389-393, 2002, Vol. 389-3Conference paper (Refereed)
    Abstract [en]

    In this work we present experimental results of several defects in 4H Sic that are of interest both from a fundamental and physical point of view. And also of great importance for device applications utilizing the Sic material. These defects include the temperature stable so called D1 defect, which is created after irradiation. This optical emission has been identified as an isoelectronic defect bound at a hole attractive pseudodonor, and we have been able to correlate this to the electrically observed hole trap HS1 seen in minority carrier transient spectroscopy (MCTS). It also includes the UD1 defect observed using absorption and FTIR and which is believed to be responsible for the semi-insulating behavior of material grown by the High temperature, HTCVD technique. Finally, we have described the formation and proper-ties of critical, generated defect in high power Sic bipolar devices. This is identified as a stacking fault in the Sic basal plane, using mainly white beam synchrotron Xray topography. The stacking fault is both optically and electrically active, by forming extended local potential reduction of the conduction band.

  • 3.
    Bergman, Peder
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ellison, A.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Storasta, Liutauras
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    The role of defects on optical and electrical properties of SiC2000Conference paper (Refereed)
    Abstract [en]

    In this work we describe some of the defects in SiC observable using different optical characterisation techniques. This includes photoluminescence measurements to determine the presence of different defects. We also show that optical techniques can be developed for mapping characterisation, which are useful both for routine measurements and for determine spatial variations and presence of defects over larger areas. One such example is the lifetime mappings on epitaxial layers on entire wafers, which has shown the importance of structural defects replicated into the epitaxial layer. Optical measurements have also been correlated to structural measurements from X-ray topography to demonstrate the importance of the structural defects

  • 4.
    Bergman, Peder
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Sridhara, S.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Defects in 4H silicon carbide2001In: Physica B, Vols. 308-310, 2001, Vol. 308-310, p. 675-679Conference paper (Refereed)
    Abstract [en]

    We present experimental results related to several different intrinsic defects that in different ways influence the material properties and are therefore technologically important defects. This includes the so-called D1 defect which is created after irradiation and which is temperature stable. From the optical measurements we were able to identify the D1 bound exciton as an isoelectronic defect bound at a hole attractive pseudo-donor, and we have been able to correlate this to the electrically observed hole trap HS1 seen in minority carrier transient spectroscopy (MCTS). Finally, we describe the formation and properties of a critical, generated defect in high power SiC bipolar devices. It is identified as a stacking fault in the SiC basal plane. It can be seen as a local reduction of the carrier lifetime, in triangular or rectangular shape, which explains the enhanced forward voltage drop in the diodes. The entire stacking faults are also optically active as can be seen as dark triangles and rectangles in low temperature cathodo-luminescence, and the fault and their bounding partial dislocations are seen and identified using synchrotron topography. © 2001 Elsevier Science B.V. All rights reserved.

  • 5. Bishop, S.M.
    et al.
    Preble, E.A.
    Hallin, Christer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Sarney, W.
    Chang, H.-R.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Jacobson, Henrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Reitmeier, Z.J.
    Wagner, B.P.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Davis, R.F.
    Characterization and comparison of 4H-SiC(112 over-bar 0) and 4H-SiC(0001) 8° off-axis substrates and homoepitaxial films2004In: Materials Research Society Symposium Proceedings, Vol. 815 Silicon Carbide 2004 - Materials, Processing and Devices,2004, 2004, p. 53-58Conference paper (Other academic)
  • 6. Bishop, S.M.
    et al.
    Preble, E.A.
    Hallin, Christer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Jacobson, Henrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Wagner, B.P.
    Reitmeier, Z.J.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Davis, R.F.
    Growth of Homoepitaxial Films on 4H-SiC(11-20)and 8° Off-Axis 4H-SiC(0001) Substrates and their Characterization2004In: Materials Science Forum, Vols. 457-460, Mater. Sci. Forum, Vol. 457-460: Trans Tech Publications Inc. , 2004, p. 221-Conference paper (Refereed)
  • 7.
    Buyanova, Irina
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Izadifard, Morteza
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Kim, J.
    Ren, F.
    Thaler, G.
    Abernathy, C. R.
    Pearton, S. J.
    Pan, C.-C.
    Chen, G.-T.
    Chyi, J.-I.
    Zavada, J. M.
    Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes2004In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 33, no 5, p. 467-471Article in journal (Refereed)
    Abstract [en]

     (Ga,Mn)/N/InGaN multiquantum well (MQW) diodes were grown by molecular beam epitaxy (MBE). The current-voltage characteristics of the diodes show the presence of a parasitic junction between the (Ga,Mn)N and the n-GaN in the top contact layer due to the low conductivity of the former layer. Both the (Ga,Mn)N/InGaN diodes and control samples without Mn doping show no or very low (up to 10% at the lowest temperatures) optical (spin) polarization at zero field or 5 T, respectively. The observed polarization is shown to correspond to the intrinsic optical polarization of the InGaN MQW, due to population distribution between spin sublevels at low temperature, as separately studied by resonant optical excitation with a photon energy lower than the bandgap of both the GaN and (Ga,Mn)N. This indicates efficient losses in the studied structures of any spin polarization generated by optical spin orientation or electrical spin injection. The observed vanishing spin injection efficiency of the spin light-emitting diode (LED) is tentatively attributed to spin losses during the energy relaxation process to the ground state of the excitons giving rise to the light emission.

  • 8.
    Carlsson, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Trapped carrier electroluminescence (TraCE) - A novel method for correlating electrical and optical measurements2001In: Physica B, Vols. 308-310, 2001, Vol. 308-310, p. 1165-1168Conference paper (Refereed)
    Abstract [en]

    SiC is a semiconductor with very good material properties for high power, high frequency and high temperature applications. During device fabrication irradiation with particles is often used, e.g., ion-implantation, which creates intrinsic defects. The most persistent defect in SiC is DI that appears after irradiation and subsequent high temperature annealing. A direct method called Trapped Carrier Electroluminescence (TraCE) for correlating minority carrier traps with luminescence measurements is presented. A semi-transparent Schottky diode under reverse bias is illuminated with a laser pulse of above band gap light to create minority carriers that are captured to traps in the space charge region. Majority carriers are introduced when the reverse bias is removed and the space charge region is reduced. The majority carriers recombine with the trapped minority carriers and the emitted light from the recombination is detected. TraCE has been used to study and correlate the DI bound exciton luminescence from intrinsic defects in SiC with an electrically observed hole trap HS1. © 2001 Elsevier Science B.V. All rights reserved.

  • 9.
    Carlsson, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Hemmingsson, Carl
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Electroluminescence from implanted and epitaxially grown pn-diodes2000In: Materials Science Forum, Vols. 338-343, Trans Tech Publications Inc., 2000, Vol. 338-3, p. 687-690Conference paper (Refereed)
    Abstract [en]

    The electroluminescence from pn-diodes with (1) aluminum doped epitaxially grown, (2) aluminum implanted or (3) aluminum and boron implanted p-layer have been investigated. The temperature dependence for both the spectra and the decays of the major spectral components have been investigated at temperatures from 80 K to 550 K. The implanted diodes show implantation damage in the form of the D-1 center and lack of emission from the aluminum center. The epitaxial diodes show luminescence from the aluminum center. The band edge luminescence is visible above 150 K for the epitaxial diode and above 300 K for the implanted. The emission from deep boron can be seen in the aluminum and boron co-implanted diode and in the epitaxially grown diode that have an unintentional boron doping below 10(17) cm(-3).

  • 10.
    Carlsson, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Skold, K
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Uppsala Univ, Inst Neutron Res, SE-61182 Nykoping, Sweden.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Neutron irradiation of 4H SiC2001In: Materials Science Forum, Vols. 353-356, 2001, Vol. 353-3, p. 555-558Conference paper (Refereed)
    Abstract [en]

    The effect of neutron irradiation on 4H SiC epitaxial layers are studied. Several different doses of both fast and thermal neutrons have been used and the samples have been annealed from 500 degreesC to 2000 degreesC. The defect concentration dependence on the fast neutron flux and on the annealing temperature is investigated. At temperatures from 900 degreesC to 1300 degreesC new lines between 3960 Angstrom and 4270 Angstrom appear. They are similar in behavior to the E-A and D1 spectra and are assumed to be related to excitons bound to isoelectronic centers. After annealing at 2000 degreesC another new line appears at 3809 Angstrom. The similarity of this line with phosphorus in 6H makes us tentatively ascribe it to phosphorus.

  • 11. Ellison, A.
    et al.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, W.
    Iakimov, Tihomir
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Storasta, Liutauras
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Henelius, N.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    HTCVD Growth of Semi-Insulating 4H-SiC Crystals With Low Defect Density2001In: Mat. Res. Soc. Symp. Proc., Vol. 640, 2001, p. H1.2-Conference paper (Refereed)
  • 12. Ellison, A
    et al.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Nguyen, Tien Son
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    HTCVD grown semi-insulating SiC substrates2003In: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, p. 33-38Conference paper (Refereed)
    Abstract [en]

    The low residual doping of HTCVD grown semi-insulating SiC crystals enables the use of decreased concentrations of compensating deep levels, thereby providing new material solutions for microwave devices. Depending on the growth conditions, high resistivity crystals with either a dominating Si-vacancy absorption or with an EPR signature of intrinsic defects such as the C-vacancy and the Si-antisite are obtained. The electrical properties of substrates with resistivities above 10(11) Omega-cm are shown to be stable upon annealing during SiC epitaxy conditions. Micropipe closing at the initial growth stage enables the demonstration of low defect density off- and on-axis 2 2-inch semi-insulating 4H SiC substrates with micropipe densities down to 1.2 cm(-2).

  • 13.
    Forsberg, Urban
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Rorsman, N.
    Linköping University, Department of Physics, Chemistry and Biology.
    Eriksson, J.
    Linnarsson, M. K.
    Solid State Electronics, Royal Institute of Technology, SE-164 40 Kista, Sweden.
    Danielsson, Örjan
    Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, Department of Physics, Chemistry and Biology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Growth and characterisation 4H-SiC MESFET structures grown by Hot-Wall CVD2001In: Proc. of the MRS 2000 Fall Meeting, 2001, p. H2.3.2-Conference paper (Refereed)
    Abstract [en]

    Metal semiconductor field effect transistor structures have been grown in a hot-wall CVD reactor. Using trimethylaluminium and nitrogen, p- and n-type epitaxial layers were grown on semi insulating substrates. A comprehensive characterization study of thickness and doping of these multi structures has been performed by using scanning electron microscopy , secondary ion mass spectrometry, capacitance-voltage and low temperature photoluminescence. Optimisation of growth parameters has resulted in very abrupt doping profiles. The grown metal semiconductor field effect transistor structures have been processed and parts of the transistor properties are presented.

  • 14.
    Hallen, A.
    et al.
    Hallén, A., Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden.
    Janson, M.S.
    Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden.
    Kuznetsov, A.Yu.
    Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden.
    Aberg, D.
    Åberg, D., Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden.
    Linnarsson, M.K.
    Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden.
    Svensson, B.G.
    Department of Electronics, Royal Institute of Technology, P.O. Box Electrum 229, S 164 40 Kista, Sweden, Physical Electronics, Department of Physics, Oslo University, P.O. Box 1048, Blindern, N 0316 Oslo, Norway.
    Persson, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Sridhara, S.G
    Zhang, Y.
    Division of Ion Physics, Box 534, Ångström Laboratory, S-751 21 Uppsala, Sweden.
    Ion implantation of silicon carbide2002In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 186, no 1-4, p. 186-194Article in journal (Refereed)
    Abstract [en]

    Ion implantation is an important technique for a successful implementation of commercial SiC devices. Much effort has also been devoted to optimising implantation and annealing parameters to improve the electrical device characteristics. However, there is a severe lack of understanding of the fundamental implantation process and the generation and annealing kinetics of point defects and defect complexes. Only very few of the most elementary intrinsic point defects have been unambiguously identified so far. To reach a deeper understanding of the basic mechanisms SiC samples have been implanted with a broad range of ions, energies, doses, etc., and the resulting defects and damage produced in the lattice have been studied with a multitude of characterisation techniques. In this contribution we will review some of the results generated recently and also try to indicate where more research is needed. In particular, deep level transient spectroscopy (DLTS) has been used to investigate point defects at very low doses and transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) are used for studying the damage build-up at high doses. © 2002 Elsevier Science B.V. All rights reserved.

  • 15.
    Henry, Anne
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Nitrogen delta doping in 4H-SiC epilayers2003In: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, p. 153-156Conference paper (Refereed)
    Abstract [en]

    Buried nitrogen delta-doped SiC 4H epitaxial layers have been grown in a horizontal hotwall chemical vapor deposition reactor. The history of the growth parameters was recorded. Secondary ion mass spectrometry (SIMS) and Capacitance-Voltage (CV) were carried out to investigate the nitrogen doping distribution. Evaluation of the growth rate as a function of the time is determined with emphasis on the beginning of the growth when a transient of the growth rate is observed.

  • 16.
    Ivanov, Ivan Gueorguiev
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zhang, J
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Photoconductivity of lightly-doped and semi-insulating 4H-SiC and the free exciton binding energy2002In: Materials Science Forum, Vols. 389-393, 2002, Vol. 389-3, p. 613-616Conference paper (Refereed)
    Abstract [en]

    The paper presents a study of the structure of the photoconductivity spectra of various 4H-SiC samples near the absorption edge. By means of comparison of the spectra of low doped (mid 10(14) cm(-3)), very low doped (in 10(13) cm(-3) range), and semi-insulating moderately doped samples, features in the photocurrent due to contribution from creation of free carriers (i.e., excitons in the continuum) can be recognised. This is used for determination of the free exciton binding energy, 20.5 +/- 1 meV, in agreement with a previous study. The second lowest conduction band and the spin-orbit split off valence band are also detected.

  • 17.
    Janzén, Erik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Nguyen, Son Tien
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zolnai, Z
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Defects in SiC2003In: Physica B: Condensed Matter, Vols. 340-342, 2003, Vol. 340, p. 15-24Conference paper (Refereed)
    Abstract [en]

    Recent results from studies of shallow donors, pseudodonors, and deep level defects in SiC are presented. The selection rules for transitions between the electronic levels of shallow donors in 4H-SiC in the dipole approximation are derived and the ionization energy for the N donor at hexagonal site is determined. Optical and electrical studies of the D-I center reveal the pseudodonor nature of this defect. Defects in high-purity semi-insulating (SI) SiC substrates including the carbon vacancy (V-C), silicon vacancy (V-Si), and (V-C-C-Si) pair are studied. The annealing behavior of these defects and their role in carrier compensation in SI 4H-SiC are discussed. (C) 2003 Elsevier B.V. All rights reserved.

  • 18. Kakanakova-Georgieva, A
    et al.
    Forsberg, Urban
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Hallin, Christer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Persson, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Pozina, Galia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Implementation of hot-wall MOCVD in the growth of high-quality GaN on SiC2003In: Materials Science Forum, Vols. 433-436, Trans Tech Publications , 2003, Vol. 433-4, p. 991-994Conference paper (Refereed)
    Abstract [en]

    This paper reports on the growth of high-quality GaN layers on SiC substrates by hotwall MOCVD. Use of AlN buffer with a thickness exceeding 50 nm is employed for the GaN deposition and it is found to encompass most of the misfit defects. A narrower X-ray rocking curve over asymmetric than over symmetric reflection is measured - full width at a half maximum (FWHM) of 350 arcsec vs. FWHM of 490 arcsec for 10.4 and 00.2 peaks, respectively, indicating high overall quality of the film. The free exciton photoluminescence emission peak has rather narrow FWHM of 5 meV. The typical thickness of the GaN layers is about 2 mum and they are completely depleted according to the capacitance-voltage profiling, which corresponds to estimated residual doping of less than 5x10(14) cm(-3). Only in some cases when the GaN layer is not depleted, deep level transient spectroscopy is performed and two deep traps with activation energies of 0.26 and 0.59 eV below the conduction band are measured.

  • 19.
    Kakanakova-Georgieva, Anelia
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zhang, J
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Syväjärvi, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Characteristics of boron in 4H-SiC layers produced by high-temperature techniques2002In: Materials Science Forum, Vols. 389-393, 2002, Vol. 389-3, p. 259-262Conference paper (Refereed)
    Abstract [en]

    Characteristics of boron in as-grown 4H-SiC layers produced by fast epitaxy, i.e. sublimation and vertical hot-wall CVD, were studied by electrical and optical measurements. The boron-related contribution to the net acceptor concentration in the layers (as determined by CV on p-type residual doped sublimation epitaxy layers), the presence of deep boron centers (as indicated by DLTS) and boron-related "green" emission at similar to 505 nm (as observed by CL) are detected for various growth temperatures and C/Si ratios. The results are discussed in relation with the C vacancies in the lattice that may be affected by growth rate and input C/Si ratio in the CVD process.

  • 20. Kassamakova-Kolaklieva, L.
    et al.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Contreras, S.
    Consejo, C.
    Pernot, J.
    Zielinski, M.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Temperature-Dependent Hall Effect Measurements in Low - Compensated p-Type 4H-SiC2004In: Mater. Sci. Forum, Vol. 457-460, Trans Tech Publications Inc. , 2004, p. 677-Conference paper (Refereed)
    Abstract [en]

      

  • 21.
    Magnusson, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ellison, A.
    Storasta, Liutauras
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Infrared absorption and annealing behavior of semi-insulating 4H SiC HTCVD substrates2001In: Proc. of the MRS Spring Meeting (2001), Vol. 680E, 2001, p. E5.11-Conference paper (Refereed)
  • 22.
    Nguyen, Son Tien
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Wagner, Matthias
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Hemmingsson, Carl
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Greulich-Weber, S.
    Spaeth, J.-M.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Electronic structure of deep defects in SiC2004In: Silicon Carbide: Recent Major Advances / [ed] W.J. Choyke, H. Matsunami, G. Pens, Berlin, Heidelberg: Springer Verlag , 2004, p. -899Chapter in book (Other academic)
    Abstract [en]

    Since the 1997 publication of Silicon Carbide - A Review of Fundamental Questions and Applications to Current Device Technology edited by Choyke, et al., there has been impressive progress in both the fundamental and developmental aspects of the SiC field. So there is a growing need to update the scientific community on the important events in research and development since then. The editors have again gathered an outstanding team of the world's leading SiC researchers and design engineers to write on the most recent developments in SiC. The book is divided into five main categories: theory, crystal growth, characterization, processing and devices. Every attempt has been made to make the articles as up-to-date as possible and assure the highest standards of accuracy. As was the case for earlier SiC books, many of the articles will be relevant a decade from now so that this book will take its place next to the earlier work as a permanent and essential reference volume.

  • 23.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Aleksiejunas, R
    Sudzius, M
    Kadys, A
    Malinauskas, T
    Jarasiunas, K
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Nonequilibrium carrier diffusion and recombination in heavily-doped and semi-insulating bulk HTCVD grown 4H-SiC crystals2005In: Materials Science Forum, Vols. 483-485, 2005, Vol. 483, p. 409-412Conference paper (Refereed)
    Abstract [en]

    We applied four-wave mixing (FWM) technique for investigation of high temperature chemical vapour deposition (HTCVD) grown 4H-SiC samples with different doping levels. The determined minority electron and hole mobilities in heavily doped crystals at doping densities of 1019 cm(-3) were found to be equal to 116 and 52 cm(2)/Vs. In semi-insulating (SI) crystals, the ambipolar diffusion coefficient Da = 2.6 - 3.3 cm(2) A and carrier lifetimes of 1.5 - 2.5 ns have been measured. Irradiation of SI crystals by 6 MeV electrons resulted in essential decrease of carrier lifetime down to &SIM, 100 ps and clearly revealed the defect-assisted carrier generation with respect to two-photon interband transitions before irradiation.

  • 24.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, JP
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden ABB Corp Res, SE-72178 Vasteras, Sweden.
    Hallin, Christer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Electrical activity of residual boron in silicon carbide2002In: Materials Science Forum, Vols. 389-393, 2002, Vol. 389-3, p. 549-552Conference paper (Refereed)
    Abstract [en]

    Defects in high quality 4H silicon carbide epilayers have been studied using Deep Level Transient Spectroscopy (DLTS) and Minority Carrier Transient Spectroscopy (MCTS). Both intrinsic defect related centers HS1, Z(1/2). EH6/EH7 and shallow and deep boron centers were found. Electrical properties of the boron related traps are analyzed. Comparison with the optical decay measurements shows that boron is related to the observed lateral variations of the minority carrier lifetime in low doped 4H-SiC epilayers.

  • 25.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Bergman, J.R.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Lu, J.
    Materials Research Laboratory, Institute of Materials Science, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden.
    Deep levels created by low energy electron Irradiation in 4H-SiC2004In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 96, no 9, p. 4909-4915Article in journal (Refereed)
    Abstract [en]

    With low energy electron irradiation in the 80-250 keV range, we were able to create only those intrinsic defects related to the initial displacements of carbon atoms in the silicon carbide lattice. Radiation induced majority and minority carrier traps were analyzed using capacitance transient techniques. Four electron traps (EH1, Z1/Z2, EH3, and EH7) and one hole trap (HS2) were detected in the measured temperature range. Their concentrations show linear increase with the irradiation dose, indicating that no divacancies or di-interstitials are generated. None of the observed defects was found to be an intrinsic defect-impurity complex. The energy dependence of the defect introduction rates and annealing behavior are presented and possible microscopic models for the defects are discussed. No further defects were detected for electron energies above the previously assigned threshold for the displacement of the silicon atom at 250 keV. © 2004 American Institute of Physics. 10.1063/1.1778819.

  • 26.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Carlsson, F. H. C.
    IFM .
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Observation of recombination enhanced defect annealing in 4H-SiC2005In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 86, no 9, p. 91903-Article in journal (Refereed)
    Abstract [en]

    We report observation of recombination enhanced defect annealing in 4H-SiC detected by capacitance transient spectroscopy and low temperature photoluminescence (PL). Intrinsic defect centers, created by 160 keV electron irradiation, reduce in concentration after illumination at temperatures much lower than previously reported annealing temperatures of 400 and 800 °C. The effect is observed after both external intense above band gap laser excitation, and with recombination in a forward biased pin diode. PL measurements show that several lines, normally detected after electron irradiation, have almost or entirely disappeared by recombination enhanced annealing at room temperature. From capacitance transient measurements, the annealing enhancement is found to be largest for the HS2 hole trap, while the EH1 and EH3 electron traps also anneal out by recombination enhanced reaction but at a lower rate. © 2005 American Institute of Physics.

  • 27.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Recombination enhanced defect annealing in 4H-SiC2005In: Materials Science Forum, Vols. 483-485, 2005, Vol. 483, p. 369-372Conference paper (Refereed)
    Abstract [en]

    Recombination enhanced defect annealing of intrinsic defects in 4H-SiC, created by low energy electron irradiation, has been observed. A reduction the defect concentration at temperature lower than the normal annealing temperature of 400&DEG, C and 800&DEG, C is observed after either above bandgap laser excitation or forward biasing of a pin-diode. The presence of the defects has been studied both electrically and optically using capacitance transient spectroscopy and low temperature photoluminescence. Photoluminescence measurements show that several lines, normally detected after electron irradiation, have almost or entirely disappeared by recombination enhanced annealing at room temperature. From capacitance transient measurements, the annealing enhancement is found to be largest for the HS2 hole trap, while the EH1 and EH3 electron traps also anneal out by recombination enhanced reaction but at a lower rate.

  • 28.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Sridhara, SG
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Royal Inst Technol, Dept Elect, SE-16440 Kista, Sweden.
    Aberg, D
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Royal Inst Technol, Dept Elect, SE-16440 Kista, Sweden.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hallen, A
    Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Royal Inst Technol, Dept Elect, SE-16440 Kista, Sweden.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Proton irradiation induced defects in 4H-SiC2001In: Materials Science Forum, Vols. 353-356, 2001, Vol. 353-3, p. 431-434Conference paper (Refereed)
    Abstract [en]

    Defects created by proton irradiation of n-type 4H-SiC epilayers with different fluences and six annealing steps were investigated by Deep Level Transient Spectroscopy (DLTS) and Minority Carrier Transient Spectroscopy (MCTS). Three previously unreported hole traps with energy levels of E-V + 0.35 eV, E-V + 0.44 eV, E-V + 0.80 eV and several electron traps were found. Annealing properties and dependence upon irradiation dose of majority and minority carrier traps is presented. High temperature stability of a E-V + 0.35 eV trap has been demonstrated.

  • 29.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Sridhara, S.G.
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Egilsson, T.
    Hallen, A.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Pseudodonor nature of the D1 defect in 4H-SiC2001In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 78, no 1, p. 46-48Article in journal (Refereed)
    Abstract [en]

    We use the recent findings about the pseudodonor character of the D1 defect to establish an energy-level scheme in the band gap for the defect, predicting the existence of a hole trap at about 0.35 eV above the valence band. Using minority carrier transient spectroscopy, we prove that the D1 defect indeed is correlated to such a hole trap. In addition, we show that the D1 defect is not correlated to the Z1/2 electron trap, in contrast to what was previously reported. © 2001 American Institute of Physics.

  • 30.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Investigations of possible nitrogen participation in the Z1/Z2 defect in 4H-SiC2004In: Mater. Sci. Forum, Vol. 457-460, Trans Tech Publications Inc. , 2004, p. 469-Conference paper (Refereed)
  • 31.
    Storasta, Liutauras
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Linnarsson, MK
    Bergman, JP
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Correlation between electrical and optical mapping of boron related complexes in 4H-SiC2003In: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, p. 423-426Conference paper (Refereed)
    Abstract [en]

    Boron related photoluminescence (PL) and capacitance transient spectroscopy (DLTS and MCTS) peaks have been investigated around SIMS craters. Enhancement of boron and hydrogen related PL was observed in the vicinity of the crater, whereas the concentration of electrically active boron as measured by MCTS has decreased considerably. Comparison of the boron MCTS peak behavior after electron and proton irradiation is presented. Possible defect models based on the obtained results are discussed.

  • 32. Svensson, BG
    et al.
    Hallen, A
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Linnarsson, MK
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Kuznetsov, AY
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Janson, MS
    Aberg, D
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Osterman, J
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Persson, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Bergman, JP
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Jagadish, C
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Morvan, E
    Royal Inst Technol, SE-16440 Kista, Sweden Univ Oslo, Dept Phys, NO-0316 Oslo, Norway Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Australian Natl Univ, Canberra, ACT 0200, Australia CSIC, CNM, ES-08193 Bellaterra, Spain.
    Doping of silicon carbide by ion implantation2001In: Materials Science Forum, Vols. 353-356, Trans Tech Publications Inc., 2001, Vol. 353-356, p. 549-554Conference paper (Refereed)
    Abstract [en]

    A brief survey is given of some recent results on doping of 4H- and 6H-SiC by ion implantation. The doses and energies used are between 10(9) and 10(15) cm(-2) and 100 keV and 5 MeV, respectively, and B and Al ions (p-type dopants) are predominantly studied. After low dose implantation (less than or equal to 10(10) cm(-2)) a strong compensation is observed in n-type samples and this holds irrespective of implantation temperature up to 600 degreesC. However, at higher doses (10(14)-10(15) Al/cm(2)) the rate of defect recombination (annihilation) increases substantially during hot implants (greater than or equal to 200 degreesC) and in these samples one type of structural defect dominates after past-implant annealing at 1700-2000 degreesC. The defect is identified as a dislocation loop composed of clustered interstitial atoms inserted on the basal plane in the hexagonal crystal structure. Finally, transient enhanced diffusion (TED) of ion-implanted boron in 4H-samples is discussed.

  • 33.
    Syväjärvi, Mikael
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Ciechonski, Rafal
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Kakanakova-Georgieva, Anelia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Deep levels in 4H-SiC layers grown by sublimation epitaxy2003In: Optical Materials, Vol. 23, 2003, Vol. 23, no 1-2, p. 61-64Conference paper (Refereed)
    Abstract [en]

    Deep levels arising from incorporation of boron in epitaxial layers are presented together with studies of the Z1,2 deep level. The resultant concentrations are related to growth conditions such as growth time and growth temperature. From this the nature and incorporation of the unresolved deeper boron level is commented. The electrical activity of deep boron centers are compared with the actual amount of boron in the material and concerning their relative concentration differences. © 2003 Elsevier Science B.V. All rights reserved.

  • 34.
    Wagner, Matthias
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, JP
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Photoluminescence up-conversion processes in SiC2003In: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, p. 309-312Conference paper (Refereed)
    Abstract [en]

    Efficient photoluminescence up-conversion is observed in 4H SiC samples containing both the UD-3 defect with its characteristic photoluminescence (PL) no-phonon (NP) line in the near infrared at 1.356 eV and the titanium impurity with its emission in the visible spectral region. When both defects are present, the titanium emission can be excited efficiently by tuning the laser to UD-3. In 4H samples containing either only UD-3 or only titanium, a different photoluminescence up-conversion process can be observed. This second process occurs at photon energies higher than approximately 1.5 eV without exhibiting a clear threshold. In 6H and 15R SiC only this second process was found, even when both the UD-3 defect and the titanium impurity are abundant.

  • 35.
    Wagner, Matthias
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Photoluminescence upconversion in 4H-SiC2002In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 81, no 14, p. 2547-Article in journal (Refereed)
    Abstract [en]

     Efficient photoluminescence upconversion is observed in 4H-SiC samples containing both the UD-3 defect and the titanium impurity. In this process, the titanium photoluminescence emission with no-phonon (NP) lines at 2.848 eV (A0) and 2.789 eV (B0) can be excited by tuning the laser to the NP line of UD-3 at 1.356 eV. In samples containing either only UD-3 or only titanium, a different photoluminescence upconversion process can be observed, which occurs at photon energies higher than ~1.5 eV without exhibiting sharp features. At least one of the two processes generates both free electrons and free holes and can, therefore, be a candidate for an important recombination channel.

  • 36. Zhang, J.
    et al.
    Storasta, Liutauras
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Nguyen, Tien Son
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Electrically active defects in n-type 4H-silicon carbide grown in a vertical hot-wall reactor2003In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 93, no 8, p. 4708-4714Article in journal (Refereed)
    Abstract [en]

    The intrinsic and impurity related defects in silicon carbide (SiC), grown in a vertical hot wall reactor using chemical vapor deposition, were discussed. Low concentrations of hole traps and electron traps were detected using capacitance transient techniques. The correlation with the carrier lifetime of the investigated epilayers showed that the Z1/2 and EH6/7 centers are the limiting defects.

1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf