liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hsiao, Ching-Lien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Valyukh, Sergiy
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Curved-Lattice Epitaxial Growth of InxAl1-xN Nanospirals with Tailored Chirality2015In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 1, p. 294-300Article in journal (Refereed)
    Abstract [en]

    Chirality, tailored by external morphology and internal composition, has been realized by controlled curved-lattice epitaxial growth (CLEG) of uniform coatings of single-crystalline InxAl1-xN nanospirals. The nanospirals are formed by sequentially stacking segments of curved nanorods on top of each other, where each segment is incrementally rotated around the spiral axis. By controlling the growth rate, segment length, rotation direction, and incremental rotation angle, spirals are tailored to predetermined handedness, pitch, and height.  The curved morphology of the segments is a result of a lateral compositional gradient across the segments while maintaining a preferred crystallographic growth direction, implying a lateral gradient in optical properties as well. Left- and right-handed nanospirals, tailored with 5 periods of 200 nm pitch, as confirmed by scanning electron microscopy, exhibit uniform spiral diameters of ~80 nm (local segment diameters of ~60 nm) with tapered hexagonal tips.  High resolution electron microscopy, in combination with nanoprobe energy dispersive X-ray spectroscopy and valence electron energy loss spectroscopy, show that individual nanospirals consist of an In-rich core with ~15 nm-diameter hexagonal cross-section, comprised of curved basal planes. The core is surrounded by an Al-rich shell with a thickness asymmetry spiraling along the core. The ensemble nanospirals, across the 1 cm2 wafers, show high in-plane ordering with respect to shape, crystalline orientation, and direction of compositional gradient. Mueller matrix spectroscopic ellipsometry shows that the tailored chirality is manifested in the polarization state of light reflected off the CLEG nanospiral-coated wafers. In that, the polarization state is shown to be dependent on the handedness of the nanospirals and the wavelength of the incident light in the ultraviolet-visible region.

  • 2.
    Hsiao, Ching-Lien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Valyukh, Sergiy
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Curved-lattice epitaxial growth of chiral AlInN twisted nanorods for optical applications2012Manuscript (preprint) (Other academic)
    Abstract [en]

    Despite of using chiral metamaterials to manipulate light polarization states has been demonstrated their great potential for applications such as invisible cloaks, broadband or wavelength-tunable circular polarizers, microreflectors, etc. in the past decade [1-6], operating wavelength in ultraviolet-visible range is still a challenge issue. Since these chiral structures often consist of metallic materials, their operation is designed for the infrared and microwave regions [2-4]. Here, we show how a controlled curved-lattice epitaxial growth (CLEG) of wide-bandgap AlInN semiconductor curved nanocrystals [7] can be exploited as a novel route for tailoring chiral nanostructures in the form of twisted nanorods (TNRs). The fabricated TNRs are shown to reflect light with a high degree of polarization as well as a high degree of circular polarization (that is, nearly circularly polarized light) in the ultravioletvisible region. The obtained polarization is shown to be dependent on the handedness of the TNRs.

  • 3.
    Hsiao, Ching-Lien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chen, Ruei-San
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Persson, Per O.Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Composition tunable Al1-xInxN nanorod arrays grown by ultra-high-vacuum magnetron sputter epitaxy2011Manuscript (preprint) (Other academic)
    Abstract [en]

    Self-assembled ternary Al1-xInxN nanorod arrays with variable In concentration, 0.10 ≤ x ≤ 0.32 have been realized onto c-plane sapphire substrates by ultra-high-vacuum magnetron sputter epitaxy with Ti0.21Zr0.79N or VN seed layers assistance. The formation of nanorods was very sensitive to the applied seed layer. Without proper seed layer assistance a continuous Al1-xInxN film was grown. The nanorods exhibit hexagonal crosssections with preferential growth along the c axis. A coaxial rod structure with higher In concentration in the core was observed by (scanning) transmission electron microscopy in combination with low-loss electron energy loss spectroscopy and energy dispersive xray spectroscopy. 5 K cathodoluminescence spectroscopy of Al0.86In0.14N nanorods revealed band edge emission at ~5.46 eV, which was accompanied by a strong defectrelated emission at ~ 3.38 eV.

  • 4.
    Hsiao, Ching-Lien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Muhammad, Junaid
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chen, Ruei-San
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Spontaneous Formation of AlInN Core–Shell Nanorod Arrays by Ultrahigh-Vacuum Magnetron Sputter Epitaxy2011In: Applied Physics Express, ISSN 1882-0786, Vol. 4, no 115002Article in journal (Refereed)
    Abstract [en]

    The spontaneous formation of AlInN core–shell nanorod arrays with variable In concentration has been realized by ultrahigh-vacuum magnetron sputter epitaxy with Ti0.21Zr0.79N or VN seed layer assistance. The nanorods exhibit hexagonal cross sections with preferential growth along the c-axis. A core–shell rod structure with a higher In concentration in the core was observed by (scanning) transmission electron microscopy in combination with low-loss electron energy loss spectroscopy and energy dispersive X-ray spectroscopy. 5 K cathodoluminescence spectroscopy of Al0.86In0.14N nanorods revealed band edge emission at ∼5.46 eV, which was accompanied by a strong defect-related emission at ∼3.38 eV

  • 5.
    Junaid, Muhammad
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lai, W.-J.
    Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
    Chen, L.-C.
    Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan.
    Chen, K.-H.
    Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan/Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Epitaxial Growth of GaN (0001)/Al2O3 (0001) by Reactive High Power Impulse Magnetron Sputter DepositionManuscript (preprint) (Other academic)
    Abstract [en]

    Epitaxial GaN (0001) thin films were grown on Al2O3 (0001) substrates by reactive high power impulse magnetron sputtering of liquid Ga targets in a mixed N2/Ar discharge. A combination of x-ray diffraction, electron microscopy, atomic force microscopy, μ-Raman mapping and spectroscopy, μ-photoluminescence, time of flight elastic recoil detection, and cathodoluminescence showed the formation of relaxed and strained domains in the same films. While the strained domains form due to ion bombardment during growth, the relaxed domains exhibit

  • 6.
    Järrendahl, Kenneth
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Berlind, Torun
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Gustafson, Johan L.I.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Fernández del Río, Lia
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Landin, Jan
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Polarization of Light Reflected from Chiral Structures - Calculations Compared with Mueller Matrix Ellipsometry Measurements on Natural and Synthetic Samples2012Conference paper (Other academic)
    Abstract [en]

    The Mueller matrix elements mij representing the polarization response from a nanostructured materialis determined by the constituent materials optical properties and the superstructure. Here, we investigate how chiral structures in form of helicoidally stacked uniaxial layers determine mij as a functionof polarization state, wavelength, incidence angle and azimuthal angle of the incoming light. The studied parameters include the layer materials ordinary/extraordinary optical properties, Euler angle values, and layer thickness as well as the thickness and pitch of the helicoidal superstructure. Sub- and superstructure inhomogeneity is also introduced. From the Fresnel-based calculations, mij aswell as the degree of polarization, ellipticity and azimuth of the polarization ellipse are obtained and presented as contour and trace plots to give a complete view of the polarization behavior. The results from the calculations are compared with Mueller matrix spectroscopic ellipsometry measurements of both natural and synthesized helicoidal structures. The measurements were performed with a dualrotating compensator system (RC2, J.A. Woollam Co., Inc.) for wavelengths in the range from 245 to 1000 nm and incident angles from 20 to 75°. For some measurements the azimuthal angle of the incident light was varied. The investigated natural chiral structures were exoskeletons from several beetles in the scarab subfamilies Cetoniinae and Rutelinae. As predicted from the calculations it isobserved that the reflection from these beetles can have a high degree of polarization and high ellipticity (near-circular polarization). Both left- and right-polarization was observed. The synthesized structures are helicoidal nanorods of Al1−xInxN grown on sapphire substrates with metal-nitride seedlayers using UHV magnetron sputtering. Due to an internal composition gradient (a variation of x) in the crystalline structure, the nanorods will tilt away from the substrate normal. Helicoidal structures can thus be obtained by rotating the substrate around its normal during deposition. Samples with different pitch and layer thickness with right-handed as well as left-handed chirality were grown. Also for these structures both left and right near-circular polarized light is observed. By combining calculations, ellipsometry measurements and scanning electron microscopy characterization we get agood input to build layered models of the natural and synthetic samples. After regression fitting agood agreement between calculated and measured optical data were obtained.

  • 7.
    Magnusson, Roger
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles2015In: SPIE Proceedings Vol. 942: Bioinspiration, Biomimetics, and Bioreplication 2015 / [ed] Akhlesh Lakhtakia, Mato Knez, Raúl Martín-Palma, SPIE - International Society for Optical Engineering, 2015, Vol. 9429, p. 94290A-1-94290A-8Conference paper (Refereed)
    Abstract [en]

    The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.

  • 8.
    Magnusson, Roger
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Optical Mueller Matrix Modeling of Chiral AlxIn1-xN Nanospirals2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 571, p. 447-452Article in journal (Refereed)
    Abstract [en]

    Metamaterials in the form of chiral nanostructures have shown great potential for applications such as chemical and biochemical sensors and broadband or wavelength tunable circular polarizers. Here we demonstrate a method to produce tailored transparent chiral nanostructures with the wide-bandgap semiconductor AlxIn1 − xN. A series of anisotropic and transparent films of AlxIn1 − xN were produced using curved-lattice epitaxial growth on metallic buffer layers. By controlling the sample orientation during dual magnetron sputter deposition, nanospirals with right-handed or left-handed chirality were produced. Using a dual rotating compensator ellipsometer in reflection mode, the full Mueller matrix was measured in the spectral range 245–1700 nm at multiple angles of incidence. The samples were rotated one full turn around their normal during measurements to provide a complete description of the polarization properties in all directions. For certain wavelengths, unpolarized light reflected off these films becomes highly polarized with a polarization state close to circular. Nanostructured films with right- and left-handed chirality produce reflections with right- and left-handed near-circularly polarized light, respectively. A model with a biaxial layer in which the optical axes are rotated from bottom to top was fitted to the Mueller-matrix data. Hence we can perform non-destructive structural analysis of the complex thin layers and confirm the tailored structure. In addition, the refractive index, modeled with a biaxial Cauchy dispersion model, is obtained for the AlxIn1 − xN films.

  • 9.
    Muhammad, Junaid
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lai, W-J
    National Taiwan University.
    Chen, L-C
    National Taiwan University.
    Chen, K-H
    National Taiwan University.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering2011In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 110, no 12, p. 123519-Article in journal (Refereed)
    Abstract [en]

    We study the effect of high power pulses in reactive magnetron sputter epitaxy on the structural properties of GaN (0001) thin films grown directly on Al2O3 (0001) substrates. The epilayers are grown by sputtering from a liquid Ga target, using a high power impulse magnetron sputtering power supply in a mixed N2/Ar discharge. X-ray diffraction, micro-Raman, micro-photoluminescence, and transmission electron microscopy investigations show the formation of two distinct types of domains. One almost fully relaxed domain exhibits superior structural and optical properties as evidenced by rocking curves with a full width at half maximum of 885 arc sec and a low temperature band edge luminescence at 3.47 eV with the full width at half maximum of 10 meV. The other domain exhibits a 14 times higher isotropic strain component, which is due to the higher densities of the point and extended defects, resulting from the ion bombardment during growth. Voids form at the domain boundaries. Mechanisms for the formation of differently strained domains, along with voids during the epitaxial growth of GaN are discussed.

  • 10.
    Muhammad, Junaid
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stress Evolution during Growth of GaN (0001)/Al2O3 (0001) by Reactive DC Magnetron Sputter Epitaxy2014In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 47, no 14, p. 145301-Article in journal (Refereed)
    Abstract [en]

    We study the real time stress evolution, by in-situ curvature measurements, during magnetron sputter epitaxy of GaN (0001) epilayers at different growth temperatures, directly on Al2O3 (0001) substrates. The epilayers are grown by sputtering from a liquid Ga target in a mixed N2/Ar discharge. For 600 °C, a tensile biaxial stress evolution is observed, while for 700 °C and 800 °C, compressive stress evolutions are observed. Structural characterization by crosssectional transmission electron microscopy, and atomic force microscopy revealed that films grew at 700 °C and 800 °C in a layer-by-layer mode while a growth temperature of 600 °C led to an island growth mode. High resolution Xray diffraction data showed that edge and screw threading dislocation densities decreased with increasing growth temperature with a total density of 5.5×1010 cm-2. The observed stress evolution and growth modes are explained by a high adatom mobility during magnetron sputter epitaxy at 700 - 800 °C. Also other possible reasons for the different stress evolutions are discussed.

  • 11.
    Tholander, Christopher
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tasnádi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
    Zukauskaitè, Agne
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, Germany.
    Ab initio calculations and experimental study of piezoelectric YxIn1-xN thin films deposited using reactive magnetron sputter epitaxy2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 105, p. 199-206Article in journal (Refereed)
    Abstract [en]

    By combining theoretical prediction and experimental verification we investigate the piezoelectric properties of yttrium indium nitride (YxIn1-xN). Ab initio calculations show that the YxIn1-xN wurtzite phase is lowest in energy among relevant alloy structures for 0≤x≤0.5. Reactive magnetron sputter epitaxy was used to prepare thin films with Y content up to x=0.51. The composition dependence of the lattice parameters observed in the grown films is in agreement with that predicted by the theoretical calculations confirming the possibility to synthesize a wurtzite solid solution. An AlN buffer layer greatly improves the crystalline quality and surface morphology of subsequently grown YxIn1-xN films. The piezoelectric response in films with x=0.09 and x=0.14 is observed using piezoresponse force microscopy. Theoretical calculations of the piezoelectric properties predict YxIn1−xN to have comparable piezoelectric properties to ScxAl1-xN.

  • 12.
    Vikinge, Trine P.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Hansson, Kenny
    Linköping University, Department of Biomedicine and Surgery, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Sandström, Pär
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lindahl, Tomas
    Linköping University, Department of Biomedicine and Surgery, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Tengvall, Pentti
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Höök, Fredrik
    Department of Applied Physics, Chalmers University of Technology, Göteborg and Department of Cell and Molecular Biology, Lundberg Institute, Göteborg.
    Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation2000In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 15, no 11-12, p. 605-613Article in journal (Refereed)
    Abstract [en]

    The coagulation of blood plasma and whole blood was studied with a surface plasmon resonance (SPR) based device and a quartz crystal microbalance instrument with energy dissipation detection (QCM-D). The SPR and QCM-D response signals were similar in shape but differing in time scales, reflecting differences in detection mechanisms. The QCM-D response time was longer than SPR, as a physical coupling of the sample to the substrate is required for molecules to be detected by the QCM-method. Change of sample properties within the evanescent field is sufficient for detection with SPR. Both the SPR signals and the QCM-D frequency and dissipation shifts showed dependency on concentrations of coagulation activator and sensitivity to heparin additions. The ratio of dissipation to frequency shifts, commonly considered to reflect viscoelastic properties of the sample, varied with the concentration of activator in blood plasma but not in whole blood. Additions of heparin to the thromboplastin activated whole blood sample, however, made the ratio variation reoccur. Implications of these observations for the understanding of the blood coagulation processes as well as the potential of the two methods in the clinic and in research are discussed.

  • 13.
    Zukauskaite, Agne
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nanoprobe Mechanical and Piezoelectric Characterization of ScxAl1-xN(0001) Thin Films2015In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 212, no 3, p. 666-673Article in journal (Refereed)
    Abstract [en]

    Nanoindentation with in-situ electrical characterization was used to characterize piezoelectric scandium aluminum nitride (ScxAl1-xN) thin films with Sc contents up to x=0.3. The films were prepared by reactive magnetron sputtering using Al2O3 substrates with TiN seed layer/bottom electrodes at a substrate temperature of 400 °C. X-ray diffraction shows c-axis oriented wurtzite ScxAl1-xN, where the crystal quality decreases with increasing x. Piezoresponse force microscopy in mapping mode shows a single piezoelectric polarization phase in all samples. The hardness and decreases from 17 GPa in AlN to 11 GPa in Sc0.3Al0.7N, while reduced elastic modulus decreases from 265 GPa to 224 GPa, respectively. Both direct and converse piezoelectric measurements are demonstrated by first applying the load and generating the voltage and later by applying the voltage and measuring film displacement using a conductive boron doped nanoindenter tip. The Sc0.2Al0.8N films exhibit an increase in generated voltage by 15% in comparison to AlN and a correspondingly larger displacement upon applied voltage, comparable to results obtained by double beam interferometry and piezoresponse force microscopy.

     

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf