liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hedman, Christina
    et al.
    Linköping University, Department of Medicine and Care, Internal Medicine. Linköping University, Faculty of Health Sciences.
    Frystyk, Jan
    Medical Research Laboratories, Clinical Institute and Medical Department, Aarhus University Hospital, Aarhus, Denmark.
    Fridell, Karin
    Linköping University, Department of Medicine and Care, Internal Medicine. Linköping University, Faculty of Health Sciences.
    Jönsson, Anna
    Linköping University, Department of Medicine and Care, Internal Medicine. Linköping University, Faculty of Health Sciences.
    Flyvbjerg, Allan
    Medical Research Laboratories, Clinical Institute and Medical Department, Aarhus University Hospital, Aarhus, Denmark.
    Lindström, Torbjörn
    Linköping University, Department of Medicine and Care, Internal Medicine. Linköping University, Faculty of Health Sciences.
    Arnqvist, Hans
    Linköping University, Department of Medicine and Care, Internal Medicine. Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    The IGF-system is not affected by a twofold change in protein intake in patients with type 1 diabetes2005In: Growth Hormone & IGF Research, ISSN 1096-6374, E-ISSN 1532-2238, Vol. 15, no 4, p. 304-310Article in journal (Refereed)
    Abstract [en]

    Objective In type 1 diabetes the circulating IGF-system is altered with low IGF-I and changes in levels of IGF-binding proteins (IGFBPs) which may be of importance for the development of diabetes complications. Our aim was to study if IGF-I, as supported by experimental data in animals, can be affected by dietary protein intake.

    Design and methods Twelve patients with type 1 diabetes, age 37.5 ± 10.0 years (mean ± SD), diabetes duration 20.1 ± 9.3 years and HbA1c 6.3 ± 0.6% were allocated to isocaloric diets with either low normal protein content (LNP), (10 E%; 0.9 g protein/kg body weight) or high normal protein content (HNP) (20 E%; 1.8 g protein/kg body weight) in an open randomised cross-over study. Each diet was taken for 10 days with a wash-out period of 11 days in between. Circulating levels of total and free IGF-I and -II, IGFBP-1, -2 and -3 and GH-binding protein (GHBP) as well as ghrelin were measured with validated in-house immunoassays.

    Results At day 10, urinary urea excretion was 320 ± 75 mmol/24 h during LNP diet compared with 654 ± 159 mmol/24 h during HNP diet (p < 0.001). There were no changes in body weight or glycaemic control between the diets. Fasting levels of total IGF-I were 121 ± 33 μg/L after LNP and 117 ± 28 μg/L after HNP diet (ns) and the corresponding concentrations of IGFBP-1 were 142(141) and 132(157) μg/L [median (IQR)] (ns). There were no differences in plasma concentrations of total IGF-II, free IGF-I and -II, IGFBP-3, GHBP and ghrelin, whereas a small difference was found for IGFBP-2 (302 ± 97 vs. 263 ± 66 μg/L; LNP vs. HNP; p < 0.04).

    Conclusions A twofold change of the dietary protein intake does not influence the altered circulating IGF-system in type 1 diabetes. In order to affect the IGF-system other interventions must be used.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf