liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hilborn, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Sivik, Tove
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Fornander, Tommy
    Karolinska University Hospital, Sweden .
    Stål, Olle
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Nordenskjöld, Bo
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    C-X-C ligand 10 and C-X-C receptor 3 status can predict tamoxifen treatment response in breast cancer patients2014In: Breast Cancer Research and Treatment, ISSN 0167-6806, E-ISSN 1573-7217, Vol. 145, no 1, p. 73-82Article in journal (Refereed)
    Abstract [en]

    To investigate the expression levels of CXCL10 and CXCR3 in tumors from breast cancer patients randomized to adjuvant tamoxifen treatment or no endocrine treatment, in order to further study the connection to prognosis and prediction of tamoxifen treatment outcome. Immunohistochemistry on tissue microarrays from 912 breast cancer patients randomized to tamoxifen or no endocrine treatment. CXCR3 status was found to be a prognostic tool in predicting distant recurrence, as well as reduced breast cancer-specific survival. In patients with estrogen receptor (ER)-positive tumors, tumors with strong CXCL10 levels had improved effect of tamoxifen treatment in terms of local recurrence-free survival [risk ratio (RR) 0.46 (95 % CI 0.25-0.85, P = 0.01)] compared with patients with tumors expressing weak CXCL10 expression. Further, patients with ER-positive tumors with strong CXCR3 expression had an improved effect of tamoxifen in terms of breast cancer-specific survival [RR 0.34 (95 % CI 0.19-0.62, P less than 0.001)] compared with the group with weak CXCR3 levels [RR 1.33 (95 % CI 0.38-4.79, P = 0.65)]. We show here for the first time that CXCL10 and CXCR3 expression are both predictors of favorable outcome in patients treated with tamoxifen.

  • 2.
    Jansson, Agneta
    et al.
    Linköping University, Department of Biomedicine and Surgery, Oncology. Linköping University, Faculty of Health Sciences.
    Gunnarsson, Cecilia
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Cohen, Maja
    Linköping University, Department of Biomedicine and Surgery, Oncology. Linköping University, Faculty of Health Sciences.
    Sivik, Tove
    Linköping University, Department of Biomedicine and Surgery, Oncology. Linköping University, Faculty of Health Sciences.
    Stål, Olle
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    17β-hydroxysteroid dehydrogenase 14 affects estradiol levels in breast cancer cells and is a prognostic marker in estrogen receptor-positive breast cancer2006In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 66, no 23, p. 11471-11477Article in journal (Refereed)
    Abstract [en]

    Estrogens have an important role in the progression of breast cancer. The 17β-hydroxysteroid dehydrogenase (17HSD) family has been identified to be of significance in hormone-dependent tissues. 17HSD1 and 17HSD2 are the main 17HSD enzymes involved in breast cancer investigated this far, but it is possible that other hormone-regulating enzymes have a similar role. 17HSD5 and 17HSD12 are associated with sex steroid metabolism, and 17HSD14 is a newly discovered enzyme that may be involved in the estrogen balance. The mRNA expression of 17HSD5, 17HSD12, and 17HSD14 were analyzed in 131 breast cancer specimens by semiquantitative real-time PCR. The results were compared with recurrence-free survival and breast cancer-specific survival of the patients. The breast cancer cell lines MCF7, SKBR3, and ZR75-1 were transiently transfected with 17HSD14 to investigate any possible effect on estradiol levels. We found that high 17HSD5 was related to significantly higher risk of late relapse in estrogen receptor (ER)-positive patients remaining recurrence-free later than 5 years after diagnosis (P = 0.02). No relation to 17HSD12 expression was found, indicating that 17HSD12 is of minor importance in breast cancer. Patients with ER-positive tumors with high expression levels of 17HSD14 showed a significantly better prognosis about recurrence-free survival (P = 0.008) as well as breast cancer-specific survival (P = 0.01), confirmed by multivariate analysis (P = 0.04). Transfection of 17HSD14 in the human breast cancer cells MCF7 and SKBR3 significantly decreased the levels of estradiol, presenting an effect of high expression levels of the enzyme. ©2006 American Association for Cancer Research.

  • 3.
    Sivik, Tove
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Elucidating the role of 17β hydroxysteroid dehydrogenase type 14 in normal physiology and in breast cancer2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Oestrogens play key roles in the development of the majority of breast tumours, a fact that has been exploited successfully in treating breast cancer with tamoxifen, which is a selective oestrogen receptor modulator. In post-menopausal women, oestrogens are synthesised in peripheral hormone-target tissues from adrenally derived precursors. Important in the peripheral fine-tuning of sex hormone levels are the 17β hydroxysteroid dehydrogenases (17βHSDs). These enzymes catalyse the oxidation/reduction of carbon 17β of androgens and oestrogens. Upon receptor binding, the 17β-hydroxy conformation of androgens and oestrogens (testosterone and oestradiol) triggers a greater biological response than the corresponding keto-conformation of the steroids (androstenedione and oestrone), and the 17βHSD enzymes are therefore important mediators in pre-receptor regulation of sex hormone action.

    Breast tumours differ substantially with regards to molecular and/or biochemical signatures and thus clinical courses and response to treatment. Predictive factors, which aim to foretell the response of a patient to a specific therapeutic intervention, are therefore important tools for individualisation of breast cancer therapy. This thesis focuses on 17βHSD14, which is one such proposed marker, aiming to learn more of properties of the enzyme in breast cancer as well as in normal physiology. We found that high 17βHSD14 levels were correlated with clinical outcome in two separate subsets of breast tumour materials from trials evaluating adjuvant tamoxifen therapy. Striving to understand the underlying mechanisms, immunohistochemical 17βHSD14 expression patterns were analysed in a large number of human tissues using an in-house generated and validated antibody. The 17βHSD14 protein was expressed in several classical steroidogenic tissues such as breast, ovary and testis which supports idea of 17βHSD14 being an actor in sex steroid interconversion. Furthermore, using a radio-high pressure liquid chromatography method, cultured cells transiently expressing HSD17B14 were found to oxidise both oestradiol and testosterone to their less potent metabolites oestrone and androstenedione respectively. The evaluation of a mouse model lacking Hsd17b14 revealed a phenotype with impaired mammary gland branching and hepatic vacuolisation which could further suggest a role for 17βHSD14 in oestrogen regulation.

    Although other mechanisms of the enzyme cannot be ruled out, we suggest that 17βHSD14 relevance in tamoxifen-treated breast cancer is related to oestradiol-lowering properties of the enzyme which potentiate the anti-proliferative effects of tamoxifen. Translating into the clinical setting, patients with oestrogen receptor positive tumours expressing low levels of oestradiol-oxidising enzymes such as 17βHSD14 would likely receive more clinical benefit from alternative treatments to tamoxifen such as aromatase inhibitors or in the future possibly inhibitors of reductive 17βHSD-enzymes.

    List of papers
    1. 17β-hydroxysteroid dehydrogenase 14 affects estradiol levels in breast cancer cells and is a prognostic marker in estrogen receptor-positive breast cancer
    Open this publication in new window or tab >>17β-hydroxysteroid dehydrogenase 14 affects estradiol levels in breast cancer cells and is a prognostic marker in estrogen receptor-positive breast cancer
    Show others...
    2006 (English)In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 66, no 23, p. 11471-11477Article in journal (Refereed) Published
    Abstract [en]

    Estrogens have an important role in the progression of breast cancer. The 17β-hydroxysteroid dehydrogenase (17HSD) family has been identified to be of significance in hormone-dependent tissues. 17HSD1 and 17HSD2 are the main 17HSD enzymes involved in breast cancer investigated this far, but it is possible that other hormone-regulating enzymes have a similar role. 17HSD5 and 17HSD12 are associated with sex steroid metabolism, and 17HSD14 is a newly discovered enzyme that may be involved in the estrogen balance. The mRNA expression of 17HSD5, 17HSD12, and 17HSD14 were analyzed in 131 breast cancer specimens by semiquantitative real-time PCR. The results were compared with recurrence-free survival and breast cancer-specific survival of the patients. The breast cancer cell lines MCF7, SKBR3, and ZR75-1 were transiently transfected with 17HSD14 to investigate any possible effect on estradiol levels. We found that high 17HSD5 was related to significantly higher risk of late relapse in estrogen receptor (ER)-positive patients remaining recurrence-free later than 5 years after diagnosis (P = 0.02). No relation to 17HSD12 expression was found, indicating that 17HSD12 is of minor importance in breast cancer. Patients with ER-positive tumors with high expression levels of 17HSD14 showed a significantly better prognosis about recurrence-free survival (P = 0.008) as well as breast cancer-specific survival (P = 0.01), confirmed by multivariate analysis (P = 0.04). Transfection of 17HSD14 in the human breast cancer cells MCF7 and SKBR3 significantly decreased the levels of estradiol, presenting an effect of high expression levels of the enzyme. ©2006 American Association for Cancer Research.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-36099 (URN)10.1158/0008-5472.CAN-06-1448 (DOI)29885 (Local ID)29885 (Archive number)29885 (OAI)
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2018-03-26
    2. Expression Patterns of 17β-Hydroxysteroid Dehydrogenase 14 in Human Tissues
    Open this publication in new window or tab >>Expression Patterns of 17β-Hydroxysteroid Dehydrogenase 14 in Human Tissues
    2012 (English)In: Hormone and Metabolic Research, ISSN 0018-5043, E-ISSN 1439-4286, Vol. 44, no 13, p. 949-956Article in journal (Refereed) Published
    Abstract [en]

    17βHSD enzymes catalyze the stereospecific oxidation/reduction at carbon 17β of androgens and estrogens, and are important players in intracrine sex hormone synthesis. The biological relevance of 17βHSD14, first named retSDR3, is largely unknown. We generated and validated an antibody targeting the 17βHSD14 antigen and used this for immunohistochemical evaluation of expression patterns in 33 healthy human tissues. Furthermore, sex steroid conversional activity in HSD17B14 overexpressing HEK293 and MCF10A cells was investigated by assessing interconversion products of estrone, estradiol, androstenedione, testosterone, and dehydroepiandrosterone. Immunohistochemical staining patterns of 17βHSD14 with the enzyme being primarily expressed in glandular epithelial tissue reveal an enzyme with possible implications in the secretion or conversion of externally derived compounds. A role for 17βHSD14 in sex steroid metabolism is supported by the finding that 17HSD14 oxidizes both estradiol and testosterone into less bioactive steroid metabolites estrone and androstenedione, respectively.

    Place, publisher, year, edition, pages
    Georg Thieme Verlag KG, 2012
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-84681 (URN)10.1055/s-0032-1321815 (DOI)000312501800004 ()22864907 (PubMedID)
    Available from: 2012-10-17 Created: 2012-10-17 Last updated: 2017-12-07Bibliographically approved
    3. 17β-hydroxysteroid dehydrogenase type 14 is a predictive marker for tamoxifen response in oestrogen receptor positive breast cancer
    Open this publication in new window or tab >>17β-hydroxysteroid dehydrogenase type 14 is a predictive marker for tamoxifen response in oestrogen receptor positive breast cancer
    Show others...
    2012 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 7, p. e40568-Article in journal (Refereed) Published
    Abstract [en]

    Introduction: 17β-hydroxysteroid dehydrogenases (17βHSDs) are important enzymes regulating the pool of bioactive steroids in the breast. The current study was undertaken in order to evaluate implications of 17βHSD14 in breast cancer, measuring 17βHSD14 protein expression in breast tumours.

    Methods: An antibody targeting the 17βHSD14 antigen was generated and validated using HSD17B14-transfected cells and a peptide-neutralising assay. Tissue microarrays with tumours from 912 post-menopausal women diagnosed with lymph node-negative breast cancer, and randomised to adjuvant tamoxifen or no endocrine treatment, were analysed for 17βHSD14 protein expression with immunohistochemistry.

    Results: Results were obtained from 847 tumours. Patients with oestrogen positive tumours with high 17βHSD14 expression had fewer local recurrences when treated with tamoxifen (HR 0.38; 95% C.I. 0.19–0.77, p = 0.007) compared to patients with lower tumoural 17βHSD14 expression, for whom tamoxifen did not reduce the number of local recurrences (HR 1.19; 95% C.I. 0.54–2.59; p = 0.66). No prognostic importance of 17βHSD14 was seen for systemically untreated patients.

    Conclusions: Using a highly specific validated antibody for immunohistochemical analysis of a large number of breast tumours, we have shown that tumoural expression levels of 17βHSD14 can predict the outcome of adjuvant tamoxifen treatment in terms of local recurrence-free survival in patients with lymph node-negative ER+ breast cancer. The results need be verified to confirm any clinical relevance.

    Place, publisher, year, edition, pages
    Plos ONE, 2012
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-80247 (URN)10.1371/journal.pone.0040568 (DOI)
    Available from: 2012-08-23 Created: 2012-08-23 Last updated: 2017-12-07
    4. Characterisation of Hsd17b14 knockout mice
    Open this publication in new window or tab >>Characterisation of Hsd17b14 knockout mice
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    17β hydroxysteroid dehydrogenase (17βHSD) enzymes catalyse the stereospecific oxidation/reduction at carbon 17β of androgens and oestrogens and thereby regulate the pool of bioactive sex hormones. 17βHSD type 14 (17βHSD14) catalyses the inactivation of 17β-hydroxysteroids into their less bioactive 17-keto formation in vitro, however, as the catalytic efficiency of this reaction is relatively low, the question is whether this reaction is the biological role of the enzyme in vivo, or if the enzyme additionally or altogether acts within alternative metabolic pathways. To investigate the role of 17βHSD14 in vivo, we studied the phenotype of a mouse model in which the Hsd17b14 gene had been targeted through homologous recombination. Tissues from male and female mice sacrificed at 3-4 months of age were collected and analysed with regards to gene expression of Hsd17b14 and Hsd17b2 and histological appearance of selected organs. Wild type animals expressed Hsd17b14 in a large number of tissues, peaking in reproductive tissues. Mice globally lacking Hsd17b14 were grossly morphologically identical to their WT counterparts. The histological examination however, revealed impaired mammary gland branching and increased hepatocellular vacuolisation in Hsd1714 knockout animals compared with their WT counterparts. In conclusion, while phenotypical aberrances were absent in most tissues, which may be the result of genetic redundancy or possibly an indication that the gene in question is only modulatory, the main differences, primarily a mammary gland phenotype in female KO mice, implicate disturbed hormonal homeostasis, and thus a role for Hsd17b14 in steroidogenesis in vivo.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-84683 (URN)
    Available from: 2012-10-17 Created: 2012-10-17 Last updated: 2015-03-12Bibliographically approved
  • 4.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Gunnarsson, Cecilia
    Linköping University, Department of Clinical and Experimental Medicine, Medical Genetics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Fornander, Tommy
    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
    Nordenskjöld, Bo
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Skoog, Lambert
    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
    Stål, Olle
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    17β-hydroxysteroid dehydrogenase type 14 is a predictive marker for tamoxifen response in oestrogen receptor positive breast cancer2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 7, p. e40568-Article in journal (Refereed)
    Abstract [en]

    Introduction: 17β-hydroxysteroid dehydrogenases (17βHSDs) are important enzymes regulating the pool of bioactive steroids in the breast. The current study was undertaken in order to evaluate implications of 17βHSD14 in breast cancer, measuring 17βHSD14 protein expression in breast tumours.

    Methods: An antibody targeting the 17βHSD14 antigen was generated and validated using HSD17B14-transfected cells and a peptide-neutralising assay. Tissue microarrays with tumours from 912 post-menopausal women diagnosed with lymph node-negative breast cancer, and randomised to adjuvant tamoxifen or no endocrine treatment, were analysed for 17βHSD14 protein expression with immunohistochemistry.

    Results: Results were obtained from 847 tumours. Patients with oestrogen positive tumours with high 17βHSD14 expression had fewer local recurrences when treated with tamoxifen (HR 0.38; 95% C.I. 0.19–0.77, p = 0.007) compared to patients with lower tumoural 17βHSD14 expression, for whom tamoxifen did not reduce the number of local recurrences (HR 1.19; 95% C.I. 0.54–2.59; p = 0.66). No prognostic importance of 17βHSD14 was seen for systemically untreated patients.

    Conclusions: Using a highly specific validated antibody for immunohistochemical analysis of a large number of breast tumours, we have shown that tumoural expression levels of 17βHSD14 can predict the outcome of adjuvant tamoxifen treatment in terms of local recurrence-free survival in patients with lymph node-negative ER+ breast cancer. The results need be verified to confirm any clinical relevance.

  • 5.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Hakkarainen, Janne
    Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
    Hilborn, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Rodriguez-Martinez, Heriberto
    Linköping University, Department of Clinical and Experimental Medicine, Developmental Biology. Linköping University, Faculty of Health Sciences.
    Zhang, Fuping
    Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
    Poutanen, Matti
    Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Characterisation of Hsd17b14 knockout miceManuscript (preprint) (Other academic)
    Abstract [en]

    17β hydroxysteroid dehydrogenase (17βHSD) enzymes catalyse the stereospecific oxidation/reduction at carbon 17β of androgens and oestrogens and thereby regulate the pool of bioactive sex hormones. 17βHSD type 14 (17βHSD14) catalyses the inactivation of 17β-hydroxysteroids into their less bioactive 17-keto formation in vitro, however, as the catalytic efficiency of this reaction is relatively low, the question is whether this reaction is the biological role of the enzyme in vivo, or if the enzyme additionally or altogether acts within alternative metabolic pathways. To investigate the role of 17βHSD14 in vivo, we studied the phenotype of a mouse model in which the Hsd17b14 gene had been targeted through homologous recombination. Tissues from male and female mice sacrificed at 3-4 months of age were collected and analysed with regards to gene expression of Hsd17b14 and Hsd17b2 and histological appearance of selected organs. Wild type animals expressed Hsd17b14 in a large number of tissues, peaking in reproductive tissues. Mice globally lacking Hsd17b14 were grossly morphologically identical to their WT counterparts. The histological examination however, revealed impaired mammary gland branching and increased hepatocellular vacuolisation in Hsd1714 knockout animals compared with their WT counterparts. In conclusion, while phenotypical aberrances were absent in most tissues, which may be the result of genetic redundancy or possibly an indication that the gene in question is only modulatory, the main differences, primarily a mammary gland phenotype in female KO mice, implicate disturbed hormonal homeostasis, and thus a role for Hsd17b14 in steroidogenesis in vivo.

  • 6.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Progesterone and levonorgestrel regulate expression of 17 beta HSD-enzymes in progesterone receptor positive breast cancer cell line T47D2012In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 422, no 1, p. 109-113Article in journal (Refereed)
    Abstract [en]

    The use of combined hormone replacement therapy (HAT) with oestrogens and progestins in postmenopausal women has been associated with an increased risk for developing breast cancer. The reasons are not fully understood, but influence of HRT on endogenous conversion of female sex hormones may be involved. The expression of 17 beta hydroxysteroid dehydrogenases (17 beta HSD), which are enzymes catalysing the conversion between more or less potent oestrogens, may partly be regulated by progestins. The breast cancer cell lines T47D, MCF7 and ZR75-1 were treated with progesterone, medroxyprogesterone acetate (MPA) or levonorgestrel for 48 and 72 h at 10(-7) and 10(-9) M to investigate influence on 17 beta HSD1, 17 beta HSD2 and 17 beta HSD5 mRNA expression measured by real time PCR. The expression of 17 beta HSD1 increased in progesterone and levonorgestrel treated T47D cells (48 h 10(-7) M P = 0.002; P andlt; 0.001) and 17 beta HSD5 increased after progesterone treatment (48 h 10(-7) M P = 0.003), whereas the expression of 17 beta HSD2 decreased after the (48 h 10(-7) M P = 0.003; P andlt; 0.001). Similar, but less prominent effects were seen in MCF7 and ZR75-1. The progestin effects on 17 beta HSD-expression were lost when T47D cells were co-treated with progestins and the progesterone receptor (PgR) inhibitor mifprestone. We show that both reductive (17 beta HSD1 and 17 beta HSD5) and oxidative (17 beta HSD2) members of the 17 beta HSD-family are under control of progesterone and progestins in breast cancer cell lines. This is most clear in T47D cells which have high PgR expression. 17 beta HSD-enzymes are important players in the regulation of sex steroids locally in breast tumours and tumoural expression of various 17 beta HSD-enzymes have prognostic and treatment predictive relevance. We propose a mechanism for increased breast cancer risk after HRT in which hormone replacement affects the expression of 17 beta HSD-enzymes, favouring the expression of reductive enzymes, which in turn could increase levels of bioactive and mitogenic estrogens in local tissue, e.g. breast tissue.

  • 7.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology . Linköping University, Faculty of Health Sciences.
    Stål, Olle
    Linköping University, Department of Clinical and Experimental Medicine, Oncology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Fornander, T
    Karolinska Institute.
    Skoog, L
    Karolinska Institute.
    Nordenskjöld, Bo
    Linköping University, Department of Clinical and Experimental Medicine, Oncology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Significance of 17bHSD Type 14 as a Predictive Factor for Adjuvant Tamoxifen Treatment Response in Breast Cancer in CANCER RESEARCH, vol 69, issue 24, pp 596S-597S2009In: CANCER RESEARCH, 2009, Vol. 69, no 24, p. 596S-597SConference paper (Refereed)
    Abstract [en]

    n/a

  • 8.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Vikingsson, Svante
    Linköping University, Department of Medicine and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Greén, Henrik
    Linköping University, Department of Medicine and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    A validated and rapid high-performance liquidchromatography method for the quantification ofconversion of radio-labelled sex steroids2010In: Hormone Molecular Biology and Clinical Investigation, ISSN 1868-1891, Vol. 3, no 1, p. 375-381Article in journal (Refereed)
    Abstract [en]

    The 17b -hydroxysteroid dehydrogenase enzymes modify the availability of potent sex steroids and have thus attracted interest in the study of several steroid-dependent pathologies including breast, endometrial and prostate cancers. An increased awareness of the importance of steroidogenic enzymes has brought forth a demand for efficient assays to study the effects of individual enzymes on steroid levels. Methods used for assessing steroid conversion are often laborious and frequently involve hazardous sample preparation steps. We developed and validated an optimised simple method for sample preparation of sex steroids using protein precipitation by the addition of zinc sulphate/sodium hydroxide. The interconversion of radio-labelled oestrogens and androgens was quantified using high-performance liquid chromatography separation of oestrone, oestradiol, androstenedione and testosterone followed by online radiometric flow scintillation analysis. The method, which can be applied for assessing, e.g., the efficacy of inhibitors of steroidogenic enzymes, was successfully used for evaluating oestrogenic interconversion in breast cancer cell lines MCF7 and T-47D.

  • 9.
    Sivik, Tove
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Vikingsson, Svante
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Gréen, Henrik
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jansson, Agneta
    Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
    Expression Patterns of 17β-Hydroxysteroid Dehydrogenase 14 in Human Tissues2012In: Hormone and Metabolic Research, ISSN 0018-5043, E-ISSN 1439-4286, Vol. 44, no 13, p. 949-956Article in journal (Refereed)
    Abstract [en]

    17βHSD enzymes catalyze the stereospecific oxidation/reduction at carbon 17β of androgens and estrogens, and are important players in intracrine sex hormone synthesis. The biological relevance of 17βHSD14, first named retSDR3, is largely unknown. We generated and validated an antibody targeting the 17βHSD14 antigen and used this for immunohistochemical evaluation of expression patterns in 33 healthy human tissues. Furthermore, sex steroid conversional activity in HSD17B14 overexpressing HEK293 and MCF10A cells was investigated by assessing interconversion products of estrone, estradiol, androstenedione, testosterone, and dehydroepiandrosterone. Immunohistochemical staining patterns of 17βHSD14 with the enzyme being primarily expressed in glandular epithelial tissue reveal an enzyme with possible implications in the secretion or conversion of externally derived compounds. A role for 17βHSD14 in sex steroid metabolism is supported by the finding that 17HSD14 oxidizes both estradiol and testosterone into less bioactive steroid metabolites estrone and androstenedione, respectively.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf