liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boström, Sverre
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurosurgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Neurosurgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL.
    Theodorsson, Annette
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL.
    Bobinski, Lukas
    Department of Neurosurgery, Umeå University Hospital, Umeå.
    A new microsurgical instrument - a suction tube combined with a microdissector2011In: BRITISH JOURNAL OF NEUROSURGERY, ISSN 0268-8697, Vol. 25, no 3, p. 320-321Article in journal (Refereed)
    Abstract [en]

    A microsurgical suction tube with an attached ball probe has been developed. It functions as a microdissector when the ball probe is in its extended position, creating a larger working field than an ordinary sucker. When the ball probe is in the repose position, it does not interfere with the suction capacity, and the suction tube serves as a regular sucker. By adding the properties of the microdissector to the suction tube, dissection of exquisitely fine and subtle structures, including arachnoidal membranes, is facilitated. The ball probe is easily dismantled from the suction tube and the whole instrument conveniently cleaned.

  • 2.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Fluorescence spectroscopy and optical coherence tomography for brain tumor detection2016Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. Recently, neurosurgical microscopes have been modified to incorporate fluorescence modules for detection of tumor when 5-aminolevulinic acid (5-ALA) is used as a contrast. We have in combination with the fluorescence microscopes implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) in the gliomas in 50 patients intraoperatively. The results show a significantly high sensitivity for differentiating tumor from the healthy tissue and distinguished fluorescence intensity levels in the tumor cell infiltration zone around the tumor. However, knowledge on association of the quantified fluorescence signals specifically in the intermediate inflammatory zone with the infiltrative tumor cells can be complemented with volumetric tissue imaging and a higher precision histopathological analysis. In this work, a spectral domain optical coherence tomography (OCT) system with central wavelength of 1325nm has been used to image the tissue volume that the fluorescence is collected from and is evaluated against histopathological analysis for a higher precision slicing. The results show that although healthy brain has a homogenous microstructure in the OCT images, the brain tumor shows a distinguished texture in the images correlated with the PpIX fluorescence intensity and histopathology.

  • 3.
    Haj-Hosseini, Neda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Milos, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Detection of brain tumor using fluorescence and optical coherence tomography2015Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. We have previously implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid induced protoporphyrin IX (PpIX) in the gliomas. To add another dimension to the brain tumor detection and volumetric analysis of the tissue that exhibits fluorescence, optical coherence tomography was investigated on tumor specimens.

    Material and Methods:

    A fluorescence microscopy and a spectroscopy system as reported previously were used for detecting the fluorescence signals [1, 2]. A total of 50 patients have been included for intraoperative assessment of the tumor borders using the fluorescence techniques. A spectral domain OCT imaging system (TELESTO II, Thorlabs, Inc., NJ, USA) with central wavelength of 1325 nm was used to study the tissue microstructure post operatively. The system has a resolution of 13 and 5.5 μm in the lateral and axial directions, respectively. Tissue specimens from three patients undergoing brain tumor surgery were studied using the OCT system.

    Results and Conclusion:

    Using fluorescence spectroscopy the tumor could be detected with a sensitivity of 0.84 which was significantly higher than that of the surgical microscope (0.30). Brain tissue appeared rather homogeneous in the OCT images however the highly malignant tissue showed a clear structural difference from the non-malignant or low malignant brain tumor tissue which could be related to the fluorescence signal intensities.

  • 4.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Stereotactic Brain Tumor Optical Biopsy2018Conference paper (Other academic)
    Abstract [en]

    To provide guidance for targeting diagnostic tumor tissue and to avoid vessel rupture during the biopsy procedure an application specific fiber optic probe was devel-oped. The setup incorporated an in-house developed fluorescence spectroscopy system for 5-aminolevulinic acid (5-ALA) induced protopophyrin IX (PpIX) for detection in the tumor, and laser Doppler flowmeter (LDF) system for measurement of blood perfusion. Fluorescence and blood flow were recorded millimeter-wise towards the pre-calculated target. In conclusion, the optical probe made real-time detection of tumor possible and has a potential for vessel detection during the biopsy procedures. Moreover, the PpIX fluorescence, autofluorescence and blood flow in the tumor could be studied at precise positions in the brain and the tumor. In the next step, further anal-ysis will be added.

  • 5.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Milos, Peter
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy2018In: Biomedical Optics Express, E-ISSN 2156-7085, Vol. 9, no 5, p. 2284-2296Article in journal (Refereed)
    Abstract [en]

    A fiber optic probe was developed for guidance during stereotactic brain biopsy procedures to target tumor tissue and reduce the risk of hemorrhage. The probe was connected to a setup for the measurement of 5-aminolevulinic acid (5-ALA) induced fluorescence and microvascular blood flow. Along three stereotactic trajectories, fluorescence (n = 109) and laser Doppler flowmetry (LDF) (n = 144) measurements were done in millimeter increments. The recorded signals were compared to histopathology and radiology images. The median ratio of protoporphyrin IX (PpIX) fluorescence and autofluorescence (AF) in the tumor was considerably higher than the marginal zone (17.3 vs 0.9). The blood flow showed two high spots (3%) in total. The proposed setup allows simultaneous and real-time detection of tumor tissue and microvascular blood flow for tracking the vessels.

  • 6.
    Hillman, Jan
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
    Milos, Peter
    Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
    Zhengquan, Yu
    Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
    Sjögren, Florence
    Linköping University, Department of Biomedicine and Surgery, Dermatology. Linköping University, Faculty of Health Sciences.
    Anderson, Chris
    Linköping University, Department of Biomedicine and Surgery, Dermatology. Linköping University, Faculty of Health Sciences.
    Mellergård, Pekka
    Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
    Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD)2006In: Acta Neurochirurgica, ISSN 0001-6268, E-ISSN 0942-0940, Vol. 148, no 3, p. 319-324Article in journal (Refereed)
    Abstract [en]

    Objective. To compare the properties of a new intracerebral micro-dialysis catheter with a high cut-off membrane (molecular cut-off 100 kDalton) with a standard catheter (CMA70, molecular cut-off 20 kDalton).

    Methods. Paired intracerebral microdialysis catheters were inserted in fifteen comatose patients treated in a neurosurgical intensive care unit following subarachnoid haemorrhage or traumatic brain injury. The high-cut-off catheter (D100) differed from the CMA 70 catheter by the length (20 mm) and cut-off properties of the catheter membranes (100 kDalton) and the perfusion fluids used (Ringer-Dextran 60). Samples were collected every 4–6 hours, analyzed bedside (for glucose, glutamate, glycerol, lactate, pyruvate and urea) and later in the laboratory (for total protein).

    Results. Fluid recovery was similar for the two types of catheters, but significantly more protein was recovered by the D100 catheter. The recovery of glycerol and pyruvate did not differ, while minor differences in recovery of glutamate and glucose were observed. The recovery of lactate was considerably lower in the D100 catheter (p < 0.01), influencing the lactate/pyruvate-ratio. The patterns of concentration changes over time were consistent for all metabolites, and independent of type of catheter.

    Conclusion. Microdialysis catheters with high cut-off membranes can be used in routine clinical practice in the NSICU, adding the possibility of macro-molecule sampling from the extracellular space during monitoring.

  • 7.
    Mosrati, Mohamed Ali
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Malmström, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Advanced Home Care in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Lysiak, Malgorzata
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Krysztofiak, Adam
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Anna-Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Bratthall, Charlotte
    Dist Hospital, Sweden.
    Strandeus, Michael
    Ryhov Hospital, Sweden.
    Stenmark Askmalm, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma2015In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 6, no 18, p. 16663-16673Article in journal (Refereed)
    Abstract [en]

    Telomerase reverse transcriptase (TERT) activity is up-regulated in several types of tumors including glioblastoma (GBM). In the present study, 128 primary glioblastoma patients were examined for single nucleotide polymorphisms of TERT in blood and in 92 cases for TERT promoter mutations in tumors. TERT promoter mutations were observed in 86% of the tumors and of these, C228T (-124 bp upstream start codon) was detected in 75% and C250T (-146 bp) in 25% of cases. TERT promoter mutations were associated with shorter overall survival (11 vs. 20 months p = 0.002 and 12 vs. 20, p = 0.04 for C228T and C250T, respectively). The minor alleles of rs2736100 and rs10069690 SNPs, located in intron 2 and the promotor regions, respectively, were associated with an increased risk of developing GBM (p = 0.004 and 0.001). GBM patients having both TERT promoter mutations and being homozygous carriers of the rs2853669 C-allele displayed significantly shorter overall survival than those with the wild type allele. The rs2853669 SNP is located in a putative Ets2 binding site in the promoter (-246 bp upstream start codon) close to the C228T and C250T mutation hot spots. Interleukin-6 (IL-6) expression regulated by TERT promoter status and polymorphism, what leads us to think that TERT and IL-6 plays a significant role in GBM, where specific SNPs increase the risk of developing GBM while the rs2853669 SNP and specific mutations in the TERT promoter of the tumor lead to shorter survival.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf