liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, p. 5753-5762Article in journal (Refereed)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 2.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Kauczor, Joanna
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study2012In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 14, no 8Article in journal (Refereed)
    Abstract [en]

    Chelated gadolinium ions, e. g., GdDTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r(1) and r(2) values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  • 3.
    Enander, Karin
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Choulier, L
    Université Louis Pasteur.
    Olsson, Linnéa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Yushchenko, Dmitry
    Université Louis Pasteur.
    Kanmert, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Klymchenko, Andrey
    Université Louis Pasteur.
    Demchenko, A
    Palladin Institute of Biochemistry.
    Mély, Yves
    Université Louis Pasteur.
    Altschuh, Danièle
    Université Louis Pasteur.
    Development of peptide-based ratiometric biosensor constructs for direct fluorescence detection of protein analytes2007In: VII European Symposium of the Protein Society,2007, 2007Conference paper (Other academic)
    Abstract [en]

        

  • 4.
    Enander, Karin
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Choulier, Laurence
    Université Louis Pasteur.
    Selegård, Linnéa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Yushchenko, Dmitry
    Université Louis Pasteur.
    Kanmert, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Klymchenko, Andrey
    Université Louis Pasteur.
    Demchenko, Alexander
    Palladin Institute of Biochemistry.
    Mély, Yves
    Université Louis Pasteur.
    Altschuh, Danièle
    Université Louis Pasteur.
    A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte2008In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 19, no 9, p. 1864-1870Article in journal (Refereed)
    Abstract [en]

    We present the design, synthesis, and functional evaluation of peptide-based fluorescent constructs for wavelength-ratiometric biosensing of a protein analyte. The concept was shown using the high-affinity model interaction between the 18 amino acid peptide pTMVP and a recombinant antibody fragment, Fab57P. pTMVP was functionalized in two different positions with 6-bromomethyl-2-(2-furanyl)-3-hydroxychromone, an environmentally sensitive fluorophore with a two-band emission. The equilibrium dissociation constant of the interaction between pTMVP and Fab57P was largely preserved upon labeling. The biosensor ability of the labeled peptide constructs was evaluated in terms of the relative intensity change of the emission bands from the normal (N*) and tautomer (T*) excited-state species of the fluorophore (IN*/IT*) upon binding of Fab57P. When the peptide was labeled in the C terminus, the IN*/I T* ratio changed by 40% upon analyte binding, while labeling close to the residues most important for binding resulted in a construct that completely lacked ratiometric biosensor ability. Integrated biosensor elements for reagentless detection, where peptides and ratiometric fluorophores are combined to ensure robustness in both recognition and signaling, are expected to become an important contribution to the design of future protein quantification assays in immobilized formats. © 2008 American Chemical Society.

  • 5.
    Hu, Zhangjun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Zhang, Xuanjun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Highly Water-Dispersible Surface-Modified Gd2O3 Nanoparticles for Potential Dual-Modal Bioimaging2013In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 38, p. 12658-12667Article in journal (Refereed)
    Abstract [en]

    Water-dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual-modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol-based conjugated carboxylate (HL). The obtained nanoparticles (GO-L) show long-term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so-called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L-modified gadolinium oxide nanoparticles. The obtained Eu-III-doped particles (Eu:GO-L) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4nm. The average hydrodynamic diameter of the L-modified nanoparticles was estimated to be about 13nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO-L and Eu:GO-L were r(1)=6.4 and 6.3s(-1)mM(-1) with r(2)/r(1) ratios close to unity at 1.4T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd-DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.

  • 6.
    Kanungo, J
    et al.
    Jadavpur University.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Vahlberg, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Saha, H
    Jadavpur University.
    Basu, S
    Jadavpur University.
    XPS study of palladium sensitized nano porous silicon thin film2010In: BULLETIN OF MATERIALS SCIENCE, ISSN 0250-4707, Vol. 33, no 6, p. 647-651Article in journal (Refereed)
    Abstract [en]

    Nano porous silicon (PS) was formed on p-type monocrystalline silicon of 2-5 Omega cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its nano structure, is responsible for the uncontrolled oxidation in air and for the deterioration of the PS surface with time. To stabilize the material PS surface was modified by a simple and low cost chemical method using PdCl2 solution at room temperature. X-ray photoelectron spectroscopy (XPS) was performed to reveal the chemical composition and the relative concentration of palladium on the nanoporous silicon thin films. An increase of SiO2 formation was observed after PdCl2 treatment and presence of palladium was also detected on the modified surface. I-V characteristics of Al/PS junction were studied using two lateral Al contacts and a linear relationship was obtained for Pd modified PS surface. Stability of the contact was studied for a time period of around 30 days and no significant ageing effect could be observed.

  • 7.
    Lenz, Annika
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, Faculty of Science & Engineering.
    Larsson, Arvid
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 40, p. 17332-17341Article in journal (Refereed)
    Abstract [en]

    Electrochemical synthesis and physical characterization of ZnO nanoparticles functionalized with four different organic acids, three aromatic (benzoic, nicotinic, and trans-cinnamic acid) and one nonaromatic (formic acid), are reported. The functionalized nanoparticles have been characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV−vis, and photoluminescence spectroscopy. The adsorption of the organic acids at ZnO nanoparticles was further analyzed and interpreted using quantum-chemical density-functional theory computations. Successful functionalization of the nanoparticles was confirmed experimentally by the measured splitting of the carboxylic group stretching vibrations as well as by the N(1s) and C(1s) peaks from XPS. From a comparison between computed and experimental IR spectra, a bridging mode adsorption geometry was inferred. PL spectra exhibited a remarkably stronger near band edge emission for nanoparticles functionalized with formic acid as compared to the larger aromatic acids. From the quantum-chemical computations, this was interpreted to be due to the absence of aromatic adsorbate or surface states in the band gap of ZnO, caused by the formation of a complete monolayer of HCOOH. In the UV−vis spectra, strong charge-transfer transitions were observed.

  • 8.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis, Surface Modification, and Characterization of Metal Oxide Nanoparticles: Nanoprobes for Signal Enhancement in Biomedical Imaging2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis we investigate crystalline metal oxide nanoparticles of our own design to obtain nanoprobes for signal enhancement and bioimaging purposes. We report fabrication, surface modification and characterization of nanoparticles based on zinc (Zn), and rare earths (i.e. gadolinium (Gd) and europium (Eu)) singly and in combination. Our ZnO nanoparticles show high potential as fluorescent probes and Gd2O3 nanoparticles are promising as nanoprobes for MR signal enhancement. A combined Zn, Gd material is investigated as a potential dual probe. Interestingly, this nanoprobe shows, compared to the pure oxides, both increased fluorescent quantum yield and do induce improved relaxivity and by that enhanced MR signal. Nanoparticles composed of Eu doped Gd2O3 are also investigated in terms of their ability to interact with silicon surfaces. The presence of nanoparticles shows a catalytic effect on the annealing procedure of SiOx.

    Surface modification of Gd and Zn based nanoparticles is performed, in a first step to improve stabilization of the nanoparticle core. Both carboxylic acids (paper I) and a thiol terminated silane (paper II and III) are used for this purpose. In a second step, a polyethylene glycol (PEG) is used for surface modification, to increase the biocompatibility of the nanoparticles. The Mal PEG NHS is chemically linked to thiol terminated silane groups via a maleimide coupling (Paper II). The presence of free NHS functional groups is intended to enable further linking of specific molecules for targeting purposes. The fluorescent dye rhodamine was, as a proof of concept, linked via the NHS functional group to the PEGylated Gd2O3 nanoparticles (Paper II). In Paper III, an alternative linking strategy is investigated, using iodized PEG2-Biotin for coupling via the iodide unit to the thiol terminated silane on ZnO nanoparticles. The resulting surface modified nanoparticles are investigated by means of coordination chemistry and coupling efficiency using X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure  spectroscopy and infrared spectroscopy.

    List of papers
    1. ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study
    Open this publication in new window or tab >>ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study
    Show others...
    2009 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 40, p. 17332-17341Article in journal (Refereed) Published
    Abstract [en]

    Electrochemical synthesis and physical characterization of ZnO nanoparticles functionalized with four different organic acids, three aromatic (benzoic, nicotinic, and trans-cinnamic acid) and one nonaromatic (formic acid), are reported. The functionalized nanoparticles have been characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV−vis, and photoluminescence spectroscopy. The adsorption of the organic acids at ZnO nanoparticles was further analyzed and interpreted using quantum-chemical density-functional theory computations. Successful functionalization of the nanoparticles was confirmed experimentally by the measured splitting of the carboxylic group stretching vibrations as well as by the N(1s) and C(1s) peaks from XPS. From a comparison between computed and experimental IR spectra, a bridging mode adsorption geometry was inferred. PL spectra exhibited a remarkably stronger near band edge emission for nanoparticles functionalized with formic acid as compared to the larger aromatic acids. From the quantum-chemical computations, this was interpreted to be due to the absence of aromatic adsorbate or surface states in the band gap of ZnO, caused by the formation of a complete monolayer of HCOOH. In the UV−vis spectra, strong charge-transfer transitions were observed.

    Keywords
    nanoparticles, ZnO, organic acids, adsorption, synthesis, XPS, UV-vis, quantum chemical calculations
    National Category
    Physical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-50783 (URN)10.1021/jp905481v (DOI)
    Available from: 2009-10-14 Created: 2009-10-14 Last updated: 2017-12-12
    2. Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement
    Open this publication in new window or tab >>Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement
    Show others...
    2010 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, p. 5753-5762Article in journal (Refereed) Published
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

    Place, publisher, year, edition, pages
    American Chemical Society (ACS), 2010
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-54946 (URN)10.1021/la903566y (DOI)000276562300061 ()
    Available from: 2010-04-23 Created: 2010-04-23 Last updated: 2018-10-29Bibliographically approved
    3. Biotinylation of ZnO Nanoparticles and Thin Films: A Two-Step Surface Functionalization Study
    Open this publication in new window or tab >>Biotinylation of ZnO Nanoparticles and Thin Films: A Two-Step Surface Functionalization Study
    Show others...
    2010 (English)In: ACS APPLIED MATERIALS and INTERFACES, ISSN 1944-8244, Vol. 2, no 7, p. 2128-2135Article in journal (Refereed) Published
    Abstract [en]

    This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. lodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy. X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.

    Place, publisher, year, edition, pages
    AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2010
    Keywords
    ZnO nanoparticles, thin films XRD, TEM, XPS, NEXAFS, biotin, PEEM
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-58542 (URN)10.1021/am100374z (DOI)000280367000049 ()
    Available from: 2010-08-13 Created: 2010-08-13 Last updated: 2015-05-29
    4. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study
    Open this publication in new window or tab >>A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study
    Show others...
    2012 (English)In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 14, no 8Article in journal (Refereed) Published
    Abstract [en]

    Chelated gadolinium ions, e. g., GdDTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r(1) and r(2) values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

    Place, publisher, year, edition, pages
    Springer Verlag (Germany), 2012
    Keywords
    Gadolinium oxide, Synthesis, Relaxivity, XPS, IR, Toxicity
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-81505 (URN)10.1007/s11051-012-1006-2 (DOI)000307273400028 ()
    Note

    Funding Agencies|VINNOVA|2008-03011|Centre in Nanoscience and Technology at LiTH (CeNano)||Swedish research council|621-2010-5014|SERC (Swedish e-Science Research Center)||

    Available from: 2012-09-18 Created: 2012-09-18 Last updated: 2017-12-07
    5. Bifunctional gadolinium decorated ZnO nanocrystals integrating both enhanced MR signal and bright fluorescence
    Open this publication in new window or tab >>Bifunctional gadolinium decorated ZnO nanocrystals integrating both enhanced MR signal and bright fluorescence
    Show others...
    2013 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Gadolinium decorated ZnO nanoparticles simultaneously possess both fluorescent and MR enhancement properties. These ZnO nanoparticles are crystalline and shielded by an amorphous gadolinium acetate matrix. Interestingly, the Gd-acetate decoration enhances the fluorescence emission of the ZnO nanoparticles. The quantum yield does increase for samples with high Gd/Zn relative ratios and these samples do also show a higher colloidal stability.

    In addition, these nanoparticles show an enhanced relaxivity value per Gd atom (r119.9mM1s-1) compared to results earlier reported both on Gd alloyed ZnO nanoparticles and pure Gd2O3 nanoparticles. This improvement is considered to be due to the close proximity of Gd atoms and surrounding water molecules. A comprehensive study of the quantum yield and the relaxivity, as a function of composition, enable us to identify the ultimate design/composition of gadolinium decorated ZnO nanoparticles for optimum fluorescence and MR enhancement properties.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-91847 (URN)
    Available from: 2013-05-03 Created: 2013-05-03 Last updated: 2015-05-29Bibliographically approved
    6. PEEM, LEED and PES temperature study of Eu doped Gd2O3 nanoparticles and their interactions with silicon
    Open this publication in new window or tab >>PEEM, LEED and PES temperature study of Eu doped Gd2O3 nanoparticles and their interactions with silicon
    Show others...
    2013 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    We report the formation of silicate and silicide by annealing of a SiOx surface, with low coverage of Eu doped Gd2O3 nanoparticles. Interestingly, the annealing temperature required for removal of native oxide from the Si substrate decreases with as much as 200 degrees in presence of the nanoparticles. XPEEM, LEEM and MEM are used to monitor the silicide/silicate formation and SiOx removal. Fragmentation of the nanoparticles is observed, and the SiOx layer is gradually removed. Eu is migrating to clean Si areas during the annealing process, while Gd is found in areas where oxide is still present. This annealing process is clearly facilitated in the presence of rare-earth based nanoparticles, where nanoparticles are suggested to function as reaction sites. Reduction of the annealing temperature of SiOx substrates is also observed in presence of pure Eu3+ and Gd3+ ions, but to lesser extent. The significant reduction of the annealing temperature of SiO by several hundred degrees, in presence of Eu doped Gd2O3 nanoparticles, is remarkable. This type of material may find applications both within optoelectronics and processing microelectronic industry.

    Keywords
    PEEM, LEED, PES, rare-earth, silicon, annealing
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-91848 (URN)
    Available from: 2013-05-03 Created: 2013-05-03 Last updated: 2015-05-29Bibliographically approved
  • 9.
    Selegård, Linnéa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Brommesson, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Persson, Per. O. Å
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bifunctional gadolinium decorated ZnO nanocrystals integrating both enhanced MR signal and bright fluorescence2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Gadolinium decorated ZnO nanoparticles simultaneously possess both fluorescent and MR enhancement properties. These ZnO nanoparticles are crystalline and shielded by an amorphous gadolinium acetate matrix. Interestingly, the Gd-acetate decoration enhances the fluorescence emission of the ZnO nanoparticles. The quantum yield does increase for samples with high Gd/Zn relative ratios and these samples do also show a higher colloidal stability.

    In addition, these nanoparticles show an enhanced relaxivity value per Gd atom (r119.9mM1s-1) compared to results earlier reported both on Gd alloyed ZnO nanoparticles and pure Gd2O3 nanoparticles. This improvement is considered to be due to the close proximity of Gd atoms and surrounding water molecules. A comprehensive study of the quantum yield and the relaxivity, as a function of composition, enable us to identify the ultimate design/composition of gadolinium decorated ZnO nanoparticles for optimum fluorescence and MR enhancement properties.

  • 10.
    Selegård, Linnéa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Vahlberg, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Biotinylation of ZnO Nanoparticles and Thin Films: A Two-Step Surface Functionalization Study2010In: ACS APPLIED MATERIALS and INTERFACES, ISSN 1944-8244, Vol. 2, no 7, p. 2128-2135Article in journal (Refereed)
    Abstract [en]

    This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. lodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy. X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.

  • 11.
    Selegård, Linnéa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Zakharov, Alexei
    MAX-lab, Lund University, Lund, Sweden.
    Skallberg, Andréas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    PEEM, LEED and PES temperature study of Eu doped Gd2O3 nanoparticles and their interactions with silicon2013Manuscript (preprint) (Other academic)
    Abstract [en]

    We report the formation of silicate and silicide by annealing of a SiOx surface, with low coverage of Eu doped Gd2O3 nanoparticles. Interestingly, the annealing temperature required for removal of native oxide from the Si substrate decreases with as much as 200 degrees in presence of the nanoparticles. XPEEM, LEEM and MEM are used to monitor the silicide/silicate formation and SiOx removal. Fragmentation of the nanoparticles is observed, and the SiOx layer is gradually removed. Eu is migrating to clean Si areas during the annealing process, while Gd is found in areas where oxide is still present. This annealing process is clearly facilitated in the presence of rare-earth based nanoparticles, where nanoparticles are suggested to function as reaction sites. Reduction of the annealing temperature of SiOx substrates is also observed in presence of pure Eu3+ and Gd3+ ions, but to lesser extent. The significant reduction of the annealing temperature of SiO by several hundred degrees, in presence of Eu doped Gd2O3 nanoparticles, is remarkable. This type of material may find applications both within optoelectronics and processing microelectronic industry.

  • 12.
    Uvdal, Kajsa
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ahrén, Maria
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Selegård, Linnéa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Abrikossova, Natalia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Functionalized Gd2O3 Nanoparticles to Be used for MRI Contrast Enhancement2008In: AVS,2008, 2008Conference paper (Other academic)
  • 13.
    Yakimova, Rositza
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Pearce, Ruth
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    ZnO materials and surface tailoring for biosensing2012In: Frontiers in bioscience (Elite edition), ISSN 1945-0508, Vol. 4, no 1, p. 254-278Article in journal (Refereed)
    Abstract [en]

    ZnO nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensors due to their unique fundamental material properties. This paper reviews different preparation techniques of ZnO nanocrystals and material issues like wettability, biocompatibility and toxicity, which have an important relevance to biosensor functionality. Efforts are made to summarize and analyze existing results regarding surface modification and molecular attachments for successful biofunctionalization and understanding of the mechanisms involved. A section is devoted to implementations of tailored surfaces in biosensors. We end with conclusions on the feasibility of using ZnO nanocrystals for biosensing.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf