liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wagner, G
    Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, D-12489 Berlin, Germany.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, P
    Materials for Electronics and Energy Technology, University Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds2012In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 67, no 1, p. 300-302Article in journal (Refereed)
    Abstract [en]

    Cubic silicon carbide is a promising material for medium power electronics operating at high frequencies and for the subsequent growth of gallium nitride for more efficient light emitting diodes. We present a new approach to produce freestanding cubic silicon carbide (3C-SiC) with the ability to obtain good crystalline quality regarding increased domain size and reduced defect density. This would pave the way to achieve substrates of 3C-SiC so that the applications of cubic silicon carbide material having selectively (111) or (001) oriented surfaces can be explored. Our method is based on the combination of the chemical vapor deposition method and the fast sublimation growth process. Thin layers of cubic silicon carbide grown heteroepitaxially on silicon substrates are for the first time used for a subsequent sublimation growth step to increase layer thicknesses. We have been able to realize growth of freestanding (001) oriented 3C-SiC substrates using growth rates around 120 μm/h and diameters of more than 10 mm. The structural quality from XRD rocking curve measurements of (001) oriented layers shows good FWHM values down to 78 arcsec measured over an area of 1 × 2 mm2, which is a quality improvement of 2–3 times compared with other methods like CVD.

    Download full text (pdf)
    fulltext
  • 2.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, J.
    University of Erlangen-Nürnberg, Germany.
    Wagner, G.
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Spiecker, E.
    University of Erlangen-Nürnberg, Germany.
    Wellmann, P.
    University of Erlangen-Nuremberg, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Freestanding 3C-SiC grown by sublimation epitaxy using 3C-SiC templates on silicon2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 177-180Conference paper (Refereed)
    Abstract [en]

    In this work a new approach for the production of freestanding cubic silicon carbide (3C-SiC) in (001) orientation is presented which is based on the combination of chemical vapor deposition (CVD) and the fast sublimation growth process (FSGP). Fast homoepitaxial growth of 3C-SiC using sublimation epitaxy on a template created by CVD growth on silicon substrates allows to obtain thick freestanding material with low defect densities. Using standard silicon wafers as substrate material permits a cost efficient process and the applying of wafers with different orientations. The (001) orientation used in this work will potentially allow further heteroepitaxial growth of other cubic semiconductors, like e.g. gallium nitride (GaN).

  • 3.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, Julian
    University of Erlangen-Nuremberg, Germany.
    Spiecker, Erdmann
    University of Erlangen-Nuremberg, Germany.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Defect structures at the silicon/3C-SiC interface2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 423-426Conference paper (Refereed)
    Abstract [en]

    In all heteroepitaxial systems the interface between substrate and layer is a crucial point. In this work SEM and TEM studies on the interface between silicon substrate and cubic silicon carbide (3C-SiC) layers obtained by chemical vapor deposition (CVD) are presented. A clear connection between process parameters, like the design of substrate cleaning, and the heating ramp, and resulting defect structures at the substrate-layer interface could be found. Whereas the process step of etching in hot hydrogen for oxide removal is crucial for avoiding the generation of closed voids of type 2, the design of the temperature ramp-up to growth temperature during carbonization influences the interface roughness. Here a fast ramp helps to obtain a flat interface.

  • 4.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, Julian
    University of Erlangen-Nuremberg, Erlangen, Germany.
    Wagner, Günter
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Spiecker, Erdman
    University of Erlangen-Nuremberg, Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Defect generation and annihilation in 3C-SiC-(001) homoepitaxial growth by sublimation2013In: Silicon Carbide and Related Materials 2012 / [ed] Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein, Trans Tech Publications , 2013, Vol. 740-742, p. 283-286Conference paper (Refereed)
    Abstract [en]

    In this paper we present an investigation on the defect generation and annihilation during the homoepitaxial growth step of cubic silicon carbide by sublimation epitaxy on templates grown by chemical vapor deposition on silicon substrates. Several structural defects like stacking faults, twins and star-defects show opposite evolution from the template layer into the sublimation grown material. While single planar defects tend to annihilate with increasing layer thickness, the defect clusters assigned to the star-defects are enlarging. These issues contribute to a balance of how to achieve the best possible quality on thick layers.

  • 5.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Oehlschläger, F.
    Wellman, P.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    P- and n-type doping in SiC sublimation epitaxy using highly doped substrates2009In: ECSCRM2008,2008, Materials Science Forum Vols. 615-617: Trans Tech Publications , 2009, p. 85-88Conference paper (Refereed)
    Abstract [en]

    The co-doping of nitrogen and aluminum has been studied in the sublimation epitaxy growth process. It is shown that the doping may be tuned from n-type to p-type by effect of substrate doping, growth face and volume of the growth crucible. The co-doped layers show a nearly ideal I V characteristic and luminescence at room temperature.

  • 6.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology. University of Marburg, Germany.
    Zakharov, Alexei A.
    Lund University, Sweden.
    Iakimov, Tihomir
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Large area buffer-free graphene on non-polar (001) cubic silicon carbide2014In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 80, p. 823-829Article in journal (Refereed)
    Abstract [en]

    Graphene is, due to its extraordinary properties, a promising material for future electronic applications. A common process for the production of large area epitaxial graphene is a high temperature annealing process of atomically flat surfaces from hexagonal silicon carbide. This procedure is very promising but has the drawback of the formation of a buffer layer consisting of a graphene-like sheet, which is covalently bound to the substrate. This buffer layer degenerates the properties of the graphene above and needs to be avoided. We are presenting the combination of a high temperature process for the graphene production with a newly developed substrate of (0 0 1)-oriented cubic silicon carbide. This combination is a promising candidate to be able to supply large area homogenous epitaxial graphene on silicon carbide without a buffer layer. We are presenting the new substrate and first samples of epitaxial graphene on them. Results are shown using low energy electron microscopy and diffraction, photoelectron angular distribution and X-ray photoemission spectroscopy. All these measurements indicate the successful growth of a buffer free few layer graphene on a cubic silicon carbide surface. On our large area samples also the epitaxial relationship between the cubic substrate and the hexagonal graphene could be clarified.

  • 7.
    Hupfer, Thomas
    et al.
    University of Erlangen-Nuremberg, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Modeling of the Mass Transport during Homo-Epitaxial Growth of Silicon Carbide by Fast Sublimation Epitaxy2013Conference paper (Refereed)
    Abstract [en]

    Ballistic and diffusive growth regimes in the Fast Sublimation Growth Process of silicon carbide can be determined using suggested theoretical model for the mean free path calculations. The influences of temperature and inert gas pressure on the mass transport for the growth of epitaxial layers were analyzed theoretically and experimentally.

  • 8.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Morphological and Optical Stability in Growth of Fluorescent SiC on Low Off-Axis Substrates2013In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 740-742, p. 19-22Article in journal (Refereed)
    Abstract [en]

    Fluorescent silicon carbide was grown using the fast sublimation growth process on low off-axis 6H-SiC substrates. In this case, the morphology of the epilayer and the incorporation of dopants are influenced by the Si/C ratio. Differently converted tantalum foils were introduced into the growth cell in order to change vapor phase stochiometry during the growth. Fluorescent SiC grown using fresh and fully converted tantalum foils contained morphological instabilities leading to lower room temperature photoluminescence intensity while an improved morphology and optical stability was achieved with partly converted tantalum foil. This work reflects the importance of considering the use of Ta foil in sublimation epitaxy regarding the morphological and optical stability in fluorescent silicon carbide.

  • 9.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Morphological and optical stability in growth of fluorescent SiCon low off-axis substrates2013Conference paper (Other academic)
  • 10.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lundqvist, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kamiyama, Satoshi
    Meijo University, Nagoya, Japan.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    On stabilization of 3C-SiC using low off-axis 6H-SiC substrates2012Conference paper (Refereed)
    Abstract [en]

    Heteroepitaxial growth of 3C-SiC on 0.8 and 1.2 degree off-oriented 6H-SiC substrates was studied using a sublimation growth process. The 3C-SiC layers were grown at high growth rates with layer thickness up to 300 µm. The formation and the quality of 3C-SiC are influenced by the off-orientation of the substrate, the growth temperature (studied temperature range from 1750 oC to 1850oC), and the growth ambient (vacuum at 5*10-5 mbar and nitrogen at 5*10-1 mbar). The largest domains of 3C-SiC and the lowest number of double positioning boundaries were grown using nitrogen ambient and the highest growth temperature. The combined use of low off-axis substrate and high growth rate is a potential method to obtain material with bulk properties.

  • 11.
    Ou, Yiyu
    et al.
    Technical University of Denmark, Lyngby.
    Jokubavicius, Valdas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nurnberg, Erlangen, Germany .
    Wellmann, Peter
    University of Erlangen-Nurnberg, Erlangen, Germany.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Haiyan
    Technical University of Denmark, Lyngby.
    Broadband and omnidirectional light harvesting enhancement of fluorescent SiC2012In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 20, no 7, p. 7575-7579Article in journal (Refereed)
    Abstract [en]

    In the present work, antireflective sub-wavelength structures have been fabricated on fluorescent 6H-SiC to enhance the white light extraction efficiency by using the reactive-ion etching method. Broadband and omnidirectional antireflection characteristics show that 6H-SiC with antireflective sub-wavelength structures suppress the average surface reflection significantly from 20.5 % to 1.01 % over a wide spectral range of 390-784 nm. The luminescence intensity of the fluorescent 6H-SiC could be enhanced in the whole emission angle range. It maintains an enhancement larger than 91 % up to the incident angle of 70 degrees, while the largest enhancement of 115.4 % could be obtained at 16 degrees. The antireflective sub-wavelength structures on fluorescent 6H-SiC could also preserve the luminescence spectral profile at a large emission angle by eliminating the Fabry-Perot microcavity interference effect.

  • 12.
    Schimmel, Saskia
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology. University of Erlangen, Germany.
    Kaiser, Michl
    University of Erlangen, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yi Yu
    Technical University of Denmark, Lyngby.
    Ou, Hai Yan
    Technical University of Denmark, Lyngby.
    Linnarsson, Margareta K.
    KTH Royal Institute of Technology, Sweden.
    Wellmann, Peter
    University of Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Step-flow growth of fluorescent 4H-SiC layers on 4 degree off-axis substrates2013In: Silicon Carbide and Related Materials 2012 / [ed] Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein, Trans Tech Publications , 2013, Vol. 740-742, p. 185-188Conference paper (Refereed)
    Abstract [en]

    Homoepitaxial layers of fluorescent 4H-SiC were grown on 4 degree off-axis substrates by sublimation epitaxy. Luminescence in the green spectral range was obtained by co-doping with nitrogen and boron utilizing donor-acceptor pair luminescence. This concept opens possibilities to explore green light emitting diodes using a new materials platform.

  • 13.
    Schimmel, Saskia
    et al.
    University of Erlangen, Germany .
    Kaiser, Michl
    University of Erlangen, Germany .
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yiyu
    Technical University of Denmark, Lyngby.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Linnarsson, Margareta K.
    School of Information and Communication Technology, KTH Royal Institute of Technology, Kista, Sweden.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Haiyan
    Technical University of Denmark, Lyngby.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen, Germany .
    The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy2014In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 56, no 1, p. 012002-Article in journal (Refereed)
    Abstract [en]

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account dislocation density and distribution. Different doping concentrations and variations in gas phase composition and pressure are investigated.

    Download full text (pdf)
    fulltext
  • 14.
    Syväjärvi, Mikael
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, J.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Grivickas, Vytautas
    Vilnius University, Lithuania.
    Ou, Yiyu
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaisr, M.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Ariyawong, Kanaparin
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Gulbinas, K.
    Vilnius University, Lithuania.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Linnarsson, M. K.
    Royal Institute of Technology, Kista-Stockholm .
    Kamiyama, S.
    Meijo University, Nagoya, Japan .
    Wellmann, P.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Spiecker, E.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Ou, H.
    Technical University of Denmark, Lyngby.
    Fluorescent SiC as a new material for white LEDs2012In: Physica scripta. T, ISSN 0281-1847, Vol. T148, p. 014002-Article in journal (Refereed)
    Abstract [en]

    Current III–V-based white light-emitting diodes (LEDs) are available. However, their yellow phosphor converter is not efficient at high currents and includes rare-earth metals, which are becoming scarce. In this paper, we present the growth of a fluorescent silicon carbide material that is obtained by nitrogen and boron doping and that acts as a converter using a semiconductor. The luminescence is obtained at room temperature, and shows a broad luminescence band characteristic of donor-to-acceptor pair recombination. Photoluminescence intensities and carrier lifetimes reflect a sensitivity to nitrogen and boron concentrations. For an LED device, the growth needs to apply low-off-axis substrates. We show by ultra-high-resolution analytical transmission electron microscopy using aberration-corrected electrons that the growth mechanism can be stable and that there is a perfect epitaxial relation from the low-off-axis substrate and the doped layer even when there is step-bunching.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf