liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 92
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alling, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Armiento, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary (M1-xMxB2)-M-1-B-2 alloys with AlB2 type structure2015In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5Article in journal (Refereed)
    Abstract [en]

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary (M1-xMxB2)-M-1-B-2 alloys comprising (MB2)-B-i (M-i = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at E-F in TiB2, ZrB2, and HfB2.

  • 2.
    Anasori, Babak
    et al.
    Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Ju Moon, Eun
    Drexel University, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hosler, Brian C.
    Drexel University, PA 19104 USA.
    Caspi, Elad N.
    Drexel University, PA 19104 USA; Nucl Research Centre Negev, Israel.
    May, Steven J.
    Drexel University, PA 19104 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Drexel University, PA 19104 USA.
    Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC32015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 118, no 9, p. 094304-Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the phase stabilities and crystal structures of two newly discovered ordered, quaternary MAX phases-Mo2TiAlC2 and Mo2Ti2AlC3-synthesized by mixing and heating different elemental powder mixtures of mMo:(3-m) Ti:1.1Al:2C with 1.5 less than= m less than= 2.2 and 2Mo: 2Ti:1.1Al:2.7C to 1600 degrees C for 4 h under Ar flow. In general, for m greater than= 2 an ordered 312 phase, (Mo2Ti) AlC2, was the majority phase; for mless than 2, an ordered 413 phase (Mo2Ti2)AlC3, was the major product. The actual chemistries determined from X-ray photoelectron spectroscopy (XPS) are Mo2TiAlC1.7 and Mo2Ti1.9Al0.9C2.5, respectively. High resolution scanning transmission microscopy, XPS and Rietveld analysis of powder X-ray diffraction confirmed the general ordered stacking sequence to be Mo-Ti-Mo-Al-Mo-Ti-Mo for Mo2TiAlC2 and Mo-Ti-Ti-Mo-Al-Mo-Ti-Ti-Mo for Mo2Ti2AlC3, with the carbon atoms occupying the octahedral sites between the transition metal layers. Consistent with the experimental results, the theoretical calculations clearly show that M layer ordering is mostly driven by the high penalty paid in energy by having the Mo atoms surrounded by C in a face-centered configuration, i.e., in the center of the Mn+1Xn blocks. At 331 GPa and 367 GPa, respectively, the Youngs moduli of the ordered Mo2TiAlC2 and Mo2Ti2AlC3 are predicted to be higher than those calculated for their ternary end members. Like most other MAX phases, because of the high density of states at the Fermi level, the resistivity measurement over 300 to 10K for both phases showed metallic behavior. (C) 2015 AIP Publishing LLC.

  • 3.
    Anders, Andre
    et al.
    University of California Berkeley.
    Lim, Sunnie H. N.
    University of California Berkeley.
    Man Yu, Kin
    University of California Berkeley.
    Andersson, Joakim
    University of California Berkeley.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    McFarland, Mike
    Acree Technology Inc.
    Brown, Jeff
    Acree Technology Inc.
    High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition2010In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 12, p. 3313-3319Article in journal (Refereed)
    Abstract [en]

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  • 4.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Abrikosov, Igor A.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Phase stability of Ti2AlC upon oxygen incorporation: A first-principles investigation2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 2, p. 024111-1-024111-8Article in journal (Refereed)
    Abstract [en]

    The phase stability of Ti2AlC upon oxygen incorporation has been studied by means of first-principles calculations. Recent experimental observations of this so-called MAX phase (M = early transition metal, A = A-group element, and X = C or N) show that the characteristic nanolaminated structure is retained upon oxygen incorporation, with strong indications of O substituting for C. Therefore, a solid solution of C and O on the carbon sublattice has been simulated by the so-called special quasirandom structure method. Through a developed systematic approach, the enthalpy of formation of Ti2Al(C1−x,Ox) has been compared to all experimentally known competing phases, and has been found favorable for all C to O ratios at the composition of the MAX phase. A negative isostructural formation enthalpy has also been predicted for Ti2Al(C1−x,Ox). Altogether, the results indicate that a large amount of oxygen, at least up to x=0.75, might be present in the Ti2AlC MAX-phase structure without decomposition of the material into its competing phases. Furthermore, an effect of an increased oxygen content is a corresponding increase in the bulk modulus and a change in electronic properties. These results are of importance for further understanding and identification of possible composition range of the MAX-phase oxycarbide, and hence for the prospect of tuning the material properties by a varying incorporation of oxygen.

  • 5.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetic nanoscale laminates with tunable exchange coupling from first principles2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 22, p. 220403-Article in journal (Refereed)
    Abstract [en]

    The M(n+1)AX(n) (MAX) phases are nanolaminated compounds with a unique combination of metallic and ceramic properties, not yet including magnetism. We carry out a systematic theoretical study of potential magnetic MAX phases and predict the existence of stable magnetic (Cr(1-x)Mn(x))(2)AlC alloys. We show that in this system ferromagnetically ordered Mn layers are exchange coupled via nearly nonmagnetic Cr layers, forming an inherent structure of atomic-thin magnetic multilayers, and that the degree of disorder between Cr and Mn in the alloy can be used to tune the sign and magnitude of the coupling.

  • 6.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ingason, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    2Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Thore, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mockute, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sahlberg, M.
    3Department of Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hjörvarsson, B.
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Abrikosov, A.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Complex magnetism in nanolaminated Mn2GaC2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have used first-principles calculations and Heisenberg Monte Carlo simulations to search for the magnetic ground state of Mn2GaC, a recently synthesized magnetic nanolaminate. We have, independent on method, identified a range of low energy collinear as well as non-collinear magnetic configurations, indicating a highly frustrated magnetic material with several nearly degenerate magnetic states. An experimentally obtained magnetization of only 0.29 per Mn atom in Mn2GaC may be explained by canted spins in an antiferromagnetic configuration of ferromagnetically ordered sub-layers with alternating spin orientation, denoted AFM[0001]. Furthermore, low temperature X-ray diffraction show a new basal plane peak appearing upon a magnetic transition, which is consistent with the here predicted change in inter-layer spacing for the AFM[0001] configuration.

  • 7.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    A critical evaluation of GGA plus U modeling for atomic, electronic and magnetic structure of Cr2AlC, Cr2GaC and Cr2GeC2015In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 9, p. 095601-Article in journal (Refereed)
    Abstract [en]

    In this work we critically evaluate methods for treating electron correlation effects in multicomponent carbides using a GGA + U framework, addressing doubts from previous works on the usability of density functional theory in the design of magnetic MAX phases. We have studied the influence of the Hubbard U-parameter, applied to Cr 3d orbitals, on the calculated lattice parameters, magnetic moments, magnetic order, bulk modulus and electronic density of states of Cr2AlC, Cr2GaC and Cr2GeC. By considering non-, ferro-, and five different antiferromagnetic spin configurations, we show the importance of including a broad range of magnetic orders in the search for MAX phases with finite magnetic moments in the ground state. We show that when electron correlation is treated on the level of the generalized gradient approximation (U = 0 eV), the magnetic ground state of Cr(2)AC (A = Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments, and calculated lattice parameters and bulk modulus close to experimentally reported values. By comparing GGA and GGA + U results with experimental data we find that using a U-value larger than 1 eV results in structural parameters deviating strongly from experimentally observed values. Comparisons are also done with hybrid functional calculations (HSE06) resulting in an exchange splitting larger than what is obtained for a U-value of 2 eV. Our results suggest caution and that investigations need to involve several different magnetic orders before lack of magnetism in calculations are blamed on the exchange-correlation approximations in this class of magnetic MAX phases.

  • 8.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Correlation between magnetic state and bulk modulus of Cr2AlC2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 21Article in journal (Refereed)
    Abstract [en]

    The effect of magnetism on the bulk modulus (B0) of M2AlC (M  = Ti, V, and Cr) has been studied using first principles calculations. We find that it is possible to identify an energetically favorable magnetic Cr2AlC phase without using any adjustable parameter, such as the Hubbard U. Furthermore, we show that an in-plane spin polarized configuration has substantially lower B0 as compared to the non-magnetic model. The existences of local magnetic moments on Cr atoms considerably improve agreement between theory and experiment regarding trends in B0 for M2AlC phases.

  • 9.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetic ground state of Cr2AlC, Cr2GaC, and Cr2GeC from first-principles interplay of spin configurations and strong electrons correlation2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have studied the interplay between spin configuration and electron correlations approximations as well as their influence on calculated lattice parameters, magnetic moments, and bulk modulus of the nanolaminated MAX phase materials Cr2AlC, Cr2GaC, and Cr2GeC. By considering non-, ferro- and, and five different antiferromagnetic configurations, we show the importance of including a broad range of magnetic states in search for the ground state. Our calculations show that when electron correlation is treated on the level of the generalized gradient approximation or with an additional Hubbard U interaction term up to a value of 1 eV, the magnetic ground state of Cr2AC (A=Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments and calculated lattice parameters and bulk modulus close to experimentally reported values.

  • 10.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stability trends of MAX phases from first principles2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 22, p. 220102-Article in journal (Refereed)
    Abstract [en]

    We have developed a systematic method to investigate the phase stability of M(n+1)AX(n) phases, here applied for M=Sc, Ti, V, Cr, or Mn, A=Al, and X=C or N. Through a linear optimization procedure including all known competing phases, we identify the set of most competitive phases for n=1-3 in each system. Our calculations completely reproduce experimental occurrences of stable MAX phases. We also identify and suggest an explanation for the trend in stability as the transition metal is changed across the 3d series for both carbon- and nitrogen-based systems. Based on our results, the method can be used to predict stability of potentially existing undiscovered phases.

  • 11.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnus, F.
    Uppsala University, Sweden.
    Thore, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mockuté, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Arnalds, U. B.
    University of Iceland, Iceland.
    Sahlberg, M.
    Uppsala University, Sweden.
    Hjorvarsson, B.
    Uppsala University, Sweden.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. National University of Science and Technology MISIS, Russia; Tomsk State University, Russia.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC2016In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 93, no 1, p. 014410-Article in journal (Refereed)
    Abstract [en]

    Inherently layered magnetic materials, such as magnetic M(n+1)AX(n) (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition M(n+1)AX(n) consists of M(n+1)AX(n) blocks separated by atomically thin A-layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic Mn2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of Mn2GaC MAX phases in future magnetoelectric and magnetocaloric applications.

  • 12.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jansson, Ulf
    Uppsala University, Sweden.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Influence of boron vacancies on phase stability, bonding and structure of MB2 (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure2015In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 43, p. 435702-Article in journal (Refereed)
    Abstract [en]

    Transition metal diborides in hexagonal AlB2 type structure typically form stable MB2 phases for group IV elements (M = Ti, Zr, Hf). For group V (M = V, Nb, Ta) and group VI (M = Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB2 and its influence on the phase stability and the structure for TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, CrB2, MoB2, and WB2 using first-principles calculations. Selected phases are also analyzed with respect to electronic and bonding properties. We identify trends showing that MB2 with M from group V and IV are stabilized when introducing B-vacancies, consistent with a decrease in the number of states at the Fermi level and by strengthening of the B-M interaction. The stabilization upon vacancy formation also increases when going from M in period 4 to period 6. For TiB2, ZrB2, and HfB2, introduction of B-vacancies have a destabilizing effect due to occupation of B-B antibonding orbitals close to the Fermi level and an increase in states at the Fermi level.

  • 13.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Order and disorder in quaternary atomic laminates from first-principles calculations2015In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, no 47, p. 31810-31821Article in journal (Refereed)
    Abstract [en]

    We report on the phase stability of chemically ordered and disordered quaternary MAX phases - TiMAlC, TiM2AlC2, MTi2AlC2, and Ti2M2AlC3 where M = Zr, Hf (group IV), M = V, Nb, Ta (group V), and M = Cr, Mo, W (group VI). At 0 K, layered chemically ordered structures are predicted to be stable for M from groups V and VI. By taking into account the configurational entropy, an order-disorder temperature T-disorder can be estimated. TiM2AlC2 (M = Cr, Mo, W) and Ti2M2AlC3 (M = Mo, W) are found with Tdisorder 4 1773 K and are hence predicted to be ordered at the typical bulk synthesis temperature of 1773 K. Other ordered phases, even though metastable at elevated temperatures, may be synthesized by non-equilibrium methods such as thin film growth. Furthermore, phases predicted not to be stable in any form at 0 K can be stabilized at higher temperatures in a disordered form, being the case for group IV, for MTi2AlC2 (M = V, Cr, Mo), and for Ti2M2AlC3 (M = V, Ta). The stability of the layered ordered structures with M from group VI can primarily be explained by Ti breaking the energetically unfavorable stacking of M and C where M is surrounded by C in a face-centered cubic configuration, and by M having a larger electro-negativity than Al resulting in a fewer electrons available for populating antibonding Al-Al orbitals. The results show that these chemically ordered quaternary MAX phases allow for new elemental combinations in MAX phases, which can be used to add new properties to this family of atomic laminates and in turn prospects for tuning these properties.

  • 14.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Oxygen incorporation and defect formation in Ti2AlC, V2AlC and Cr2AlC from first-principles calculations2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have studied oxygen incorporation and defect formation in M2AlC (M = Ti, V, Cr) MAX phases using first principles calculations. Evaluating phase stability and electronic structure for different oxygen and/or vacancy configurations, we show that oxygen prefer different lattice sites depending on M-element, which can be correlated to the number of available non-bonding M d-electrons. The results show that oxygen substitutes for carbon in Ti2AlC, while forming an interstitial oxygen in the Al-layer for Cr2AlC. We also predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x = 0.5) in Ti2Al(C1-xOx). Due to similar valence electron configuration of Ti2AlC and the hypothetical M2AlC (M =Zr, Hf), we also investigate if oxygen can be used to stabilize the latter MAX phases.

  • 15.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thore, Andreas
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Electronic structure, bonding characteristics, and mechanical properties in (W2/3Sc1/3)(2)AIC and (W2/3Y1/3)(2)AIC i-MAX phases from first-principles calculations2018In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 30, no 30, article id 305502Article in journal (Refereed)
    Abstract [en]

    With the recent discovery of in-plane chemically ordered MAX phases (i-MAX) of the general formula ((M2/3M1/32)-M-1)(2)AC comes addition of non-traditional MAX phase elements. In the present study, we use density functional theory calculations to investigate the electronic structure, bonding nature, and mechanical properties of the novel (W2/3Sc1/3)(2)AlC and (W2/3Y1/3)(2)AlC i-MAX phases. From analysis of the electronic structure and projected crystal orbital Hamilton populations, we show that the metallic i-MAX phases have significant hybridization between W and C, as well as Sc(Y) and C states, indicative of strong covalent bonding. Substitution of Sc for Y (M-2) leads to reduced bonding strength for W-C and Al-Al interactions while M-2-C and M-2-Al interactions are strengthened. We also compare the Voigt-Reuss-Hill bulk, shear, and Youngs moduli along the series of M-1 = Cr, Mo, and W, and relate these trends to the bonding interactions. Furthermore, we find overall larger moduli for Sc-based i-MAX phases.

  • 16.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thore, Andreas
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Electronic structure, bonding characteristics, and mechanical properties in (W2/3Sc1/3)(2)AIC and (W2/3Y1/3)(2)AIC i-MAX phases from first-principles calculations2018In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 30, no 30, article id 305502Article in journal (Refereed)
    Abstract [en]

    With the recent discovery of in-plane chemically ordered MAX phases (i-MAX) of the general formula ((M2/3M1/32)-M-1)(2)AC comes addition of non-traditional MAX phase elements. In the present study, we use density functional theory calculations to investigate the electronic structure, bonding nature, and mechanical properties of the novel (W2/3Sc1/3)(2)AlC and (W2/3Y1/3)(2)AlC i-MAX phases. From analysis of the electronic structure and projected crystal orbital Hamilton populations, we show that the metallic i-MAX phases have significant hybridization between W and C, as well as Sc(Y) and C states, indicative of strong covalent bonding. Substitution of Sc for Y (M-2) leads to reduced bonding strength for W-C and Al-Al interactions while M-2-C and M-2-Al interactions are strengthened. We also compare the Voigt-Reuss-Hill bulk, shear, and Youngs moduli along the series of M-1 = Cr, Mo, and W, and relate these trends to the bonding interactions. Furthermore, we find overall larger moduli for Sc-based i-MAX phases.

  • 17.
    Eklund, Per
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nedfors, Nils
    Uppsala University, Sweden .
    Jansson, Ulf
    Uppsala University, Sweden .
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 3, p. 035502-Article in journal (Refereed)
    Abstract [en]

    Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of similar to 3.24 angstrom and 12.82 angstrom.

  • 18.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Johansson, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Sjölen, J.
    Seco Tools AB, Fagersta, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Arc deposition of Ti–Si–C–N thin films from binary and ternary cathodes — Comparing sources of C2012In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 213, p. 145-154Article in journal (Refereed)
    Abstract [en]

    Ti–Si–C–N thin films with composition of 1–11 at.% Si and 1–20 at.% C have been deposited onto cemented carbide substrates by arcing Ti–Si cathodes in a CH4 + N2 gas mixture and, alternatively, through arcing Ti–Si–C cathodes in N2. Films of comparable compositions from the two types of cathodes have similar structure and properties. Hence, C can be supplied as either plasma ions generated from the cathode or atoms from the gas phase with small influence on the structural evolution. Over the compositional range obtained, the films were dense and cubic-phase nanocrystalline, as characterized by X-ray diffraction, ion beam analysis, and scanning and transmission electron microscopy. The films have high hardness (30–40 GPa by nanoindentation) due to hardening from low-angle grain boundaries on the nanometer scale and lattice defects such as growth-induced vacancies and alloying element interstitials.

  • 19.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nanocolumnar Epitaxial Ti1-xSixN (0 ≤ x ≤ 0.18) Thin Films Grown by Dual Reactive Magnetron Sputtering on MgO (001), (011), and (111) Substrates2012Manuscript (preprint) (Other academic)
    Abstract [en]

    Ti1-xSixNy thin films and multilayers have been grown on single-crystal TiN-templated MgO (001), (011), and (111) substrates kept at 550 °C. Elemental Ti and Si targets were used in UVH reactive dual magnetron sputtering in a mixed Ar/N2 discharge. Composition analysis by time-of-flight energy elastic recoil detection analysis show that the films are close to stoichiometric (0.95 ≤ y ≤ 1.00) with respect to TiN over the wide range of Si concentrations 0 ≤ x ≤ 0.22. High-resolution transmission electron microscopy (TEM) combined with scanning TEM and energy dispersive Xray analysis show that all films grow epitaxially for x ≤ 0.18 and that as much as every fifth Ti atom can be replaced by Si (~10 at.%) in Ti1-xSixN(001). For the (011) and (111)-oriented films, however, only 1-2 at.% Si substitutes for Ti. Instead, Si segregates to form crystalline-to-amorphous SiNz (z ≈ 1) tissue phases, which promote the formation of epitaxial TiN nanocolumns. The nanocolumns have preferred {110} interfaces and {200} top facets and grow several hundreds  of nm in length.

  • 20.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mráz, S.
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Schneider, J. M.
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Influence of Ar and N2 Pressure on Plasma Chemistry, Ion Energy, and Thin Film Composition during Filtered Arc Deposition from Ti3SiC2 Cathodes2014In: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 42, no 11, p. 3498-3507Article in journal (Refereed)
    Abstract [en]

    Arc plasma from Ti3SiC2 compound cathodes used in a filtered dc arc system has been characterized with respect to plasma chemistry and charge-state resolved ion energies. In vacuum, the plasma composition is dominated by Ti ions, with concentrations of 84.3, 9.3, and 6.4 at% for Ti, Si, and C ions, respectively. The reduced amount of Si and most notably C compared with the cathode composition is confirmed by analysis of film composition in corresponding growth experiments. The deposition of light-element deficient films is thus related to plasma generation or filter transport. The ion energy distributions in vacuum range up to 140, 90, and 70 eV for Ti, Si, and C, respectively. Corresponding average ion energies of 48, 36, and 27 eV are reduced upon introduction of gas, down to around 5 eV at 0.6 Pa Ar or 0.3 Pa N2 for all species. In vacuum, the charge state distributions of Si and C are shifted to higher values compared with corresponding elemental cathodes, likely caused by changed effective electron temperature of the plasma stemming from compound cathode material and/or by electron impact ionization in the filter. The average ion charge states are reduced upon addition of Ar, ranging between 1.97 and 1.48 for Ti, 1.91 and 1.46 for Si, and 1.25 and 1.02 for C. Similar effects are observed upon introduction of N2, though with more efficient charge state reduction with pressure. It is conceivable that the pressure-induced changes in ion energy and charge state are crucial for the film synthesis from a microstructure evolution point of view, as they affect the ion-surface interactions through supply of energy, especially when substrate biasing is employed during arc deposition from a compound cathode.

  • 21.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Si incorporation in Ti1-xSixN films grown on TiN(001) and (001)-faceted TiN(111) columns2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 257, p. 121-128Article in journal (Refereed)
    Abstract [en]

    Thin films consisting of TiN nanocrystallites encapsulated in a fully percolated SiNy tissue phase are archetypes for hard and superhard nanocomposites. Here, we investigate metastable SiNy solid solubility in TiN and probe the effects of surface segregation during the growth of TiSiN films onto substrates that are either flat TiN(001)/MgO(001) epitaxial buffer layers or TiN(001) facets of length 1-5 nm terminating epitaxial TiN(111) nanocolumns, separated by voids, deposited on epitaxial TiN(111)/MgO(111) buffer layers. Using reactive magnetron sputter deposition, the TiSiN layers were grown at 550 degrees C and the TiN buffer layers at 900 degrees C On TiN(001), the films are NaCl-structure single-phase metastable Ti1-xSixN(001) with N/(Ti + Si) = 1 and 0 less than= x less than= 0.19. These alloys remain single-crystalline to critical thicknesses h(c) ranging from 100 +/- 30 nm with x = 0.13 to 40 +/- 10 nm with x = 0.19. At thicknesses h greater than h(c), the epitaxial growth front breaks down locally to form V-shaped polycrystalline columns with an underdense feather-like nanostructure. In contrast, the voided epitaxial TiN(111) columnar surfaces, as well as the TiN(001) facets, act as sinks for SiNy. For Ti1-xSixN layers with global average composition values less than x greater than = 0.16, the local x value in the middle of Ti1-xSixN columns increases from 0.08 for columns with radius r similar or equal to 2 nm to x = 0.14 with r similar or equal to 4 nm. The average out-of-plane lattice parameter of epitaxial nanocolumns encapsulated in SiNy decreases monotonically with increasing Si fraction less than x greater than, indicating the formation of metastable (Ti,Si)N solid solutions under growth conditions similar to those of superhard nanocomposites for which the faceted surfaces of nanograins also provide sinks for SiNy.

  • 22.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Zhu, Jianqiang
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Johansson, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools AB, Sweden.
    Sjölen, Jacob
    Seco Tools AB, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ti-Si-C-N Thin Films Grown by Reactive Arc Evaporation from Ti3SiC2 Cathodes2011In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 26, p. 874-881Article in journal (Refereed)
    Abstract [en]

    Ti-Si-C-N thin films were deposited onto WC-Co substrates by industrial scale arc evaporation from Ti3SiC2 compound cathodes in N2 gas. Microstructure and hardness were found to be highly dependent on the wide range of film compositions attained, comprising up to 12 at.% Si and 16 at.% C. Nonreactive deposition yielded films consisting of understoichiometric TiCx, Ti and silicide phases with high (27 GPa) hardness. At a nitrogen pressure of 0.25-0.5 Pa, below that required for N saturation, superhard, 45-50 GPa, (Ti,Si)(C,N) films with a nanocrystalline feathered structure were formed. Films grown above 2 Pa displayed crystalline phases of more pronounced nitride character, but with C and Si segregated to grain boundaries to form weak grain boundary phases. In abundance of N, the combined presence of Si and C disturb cubic phase growth severely and compromises the mechanical strength of the films.

  • 23.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Zhu, Jianqiang
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Johansson, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools AB, Sweden.
    Sjölen, Jacob
    Seco Tools AB, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Layer Formation by Resputtering in Ti-Si-C Hard Coatings during Large Scale Cathodic Arc Deposition2011In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 15, p. 3923-3930Article in journal (Refereed)
    Abstract [en]

    This paper presents the physical mechanism behind the phenomenon of self-layering in thin films made by industrial scale cathodic arc deposition systems using compound cathodes and rotating substrate fixture. For Ti-Si-C films, electron microscopy and energy dispersive x-ray spectrometry reveals a trapezoid modulation in Si content in the substrate normal direction, with a period of 4 to 23 nm dependent on cathode configuration. This is caused by preferential resputtering of Si by the energetic deposition flux incident at high incidence angles when the substrates are facing away from the cathodes. The Ti-rich sub-layers exhibit TiC grains with size up to 5 nm, while layers with high Si-content are less crystalline. The nanoindentation hardness of the films increases with decreasing layer thickness.

  • 24.
    Goyenola, Cecilia
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gueorguiev, Gueorgui Kostov
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Theoretical prediction and synthesis of CSxFy thin films2016In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 17, p. 9527-9534Article in journal (Refereed)
    Abstract [en]

    A new carbon-based compound: CSxFy was addressed by density functional theory calculations and synthesized by reactive magnetron sputtering. Geometry optimizations and energy calculations were performed on graphene-like model systems containing sulfur and fluorine atoms. It is shown that [S+F] concentrations in the range of 0−10 at.%, structural ordered characteristics similar to graphene pieces containing ring defects are energetically feasible. The modeling predicts that CSxFy thin films with graphite and fullerene-like characteristics may be obtained for the mentioned concentration range. Accordingly, thin films were synthesized from a graphite solid target and sulfur hexafluoride as reactive gas. In agreement with the theoretical prediction, transmission electron microscopy characterization and selected area electron diffraction confirmed the presence of small ordered clusters with graphitic features in a sample containing 0.4 at.% of S and 3.4 at.% of F.

  • 25.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar2017In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 35, no 6, article id 060601Article in journal (Refereed)
    Abstract [en]

    The authors use energy- and time-dependent mass spectrometry to analyze the evolution of metal- and gas-ion fluxes incident at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of groups IVb and VIb transition-metal (TM) targets in Ar. For all TMs, the time-and energy-integrated metal/gas-ion ratio at the substrate plane NMe+/NAr+ increases with increasing peak target current density J(T,peak) due to rarefaction. In addition, NMe+/NAr+ exhibits a strong dependence on metal/gas-atom mass ratio m(Me)/m(g) and varies from similar to 1 for Ti (m(Ti)/m(Ar) = 1.20) to similar to 100 for W (m(W)/m(Ar) = 4.60), with J(T,peak) maintained constant at 1 A/cm(2). Time-resolved ion-energy distribution functions confirm that the degree of rarefaction scales with m(Me)/m(g): for heavier TMs, the original sputtered-atom Sigmund-Thompson energy distributions are preserved long after the HiPIMS pulse, which is in distinct contrast to lighter metals for which the energy distributions collapse into a narrow thermalized peak. Hence, precise timing of synchronous substrate-bias pulses, applied in order to reduce film stress while increasing densification, is critical for metal/gas combinations with m(Me)/m(g) near unity, while with m(Me)/m(g) amp;gt;amp;gt; 1, the width of the synchronous bias pulse is essentially controlled by the metal-ion time of flight. The good agreement between results obtained in an industrial system employing 440 cm(2) cathodes and a laboratory-scale system with a 20 cm(2) target is indicative of the fundamental nature of the phenomena. 

  • 26.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Cook, Kevin M.
    Naval Air Syst Command, MD 20670 USA.
    Naguib, Michael
    Oak Ridge National Lab, TN 37831 USA.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gogotsi, Yury
    Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA.
    X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 362, p. 406-417Article in journal (Refereed)
    Abstract [en]

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti-3 C2Tx,Ti3CNTx, Nb2CTx and Nb4C3Tx where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, O, OH and F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications. Published by Elsevier B.V.

  • 27.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering and 3A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, USA.
    Cook, Kevin M.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnuson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Penn, PA 19104 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gogotsi, Yury
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
    X-ray Photoelectron Spectroscopy Characterization of Two-Dimensional Titanium Metal Carbides (MXenes)2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Herein, we report X-ray Photoelectron Spectroscopy (XPS) analysis for cold pressed exfoliated 2D nanocrystals of transition metal carbides, MXenes. MXenes are a recently discovered family of 2D materials produced by selective chemical etching of the A element from MAX phases which are ternary metal carbides and nitrides. The latter has the formula of Mn+1AXn, where M is an early transition metal, A is an A-group element, and X is C and/or N. This study is a comparison between two MXenes, Ti3C2Tx and Ti2CTx, where Tx stands for surface termination groups such as –O, –OH, and –F. Ti3C2Tx and Ti2CTx were prepared by immersion of Ti3AlC2 and Ti2AlC powders in 50% conc. HF. A thorough XPS analysis was performed through peak fitting of high resolution XPS spectra and valence band, VB, spectra analysis. The effect of Ar sputtering as well as the number of layers n was the primarily interest of this study. According to the peak fitting analysis, both phases contain the following species, Ti–C, C–C, Ti–F, Ti–O and Ti–OH resulting in the following chemical formulas: Ti3C2(OH)x(O)y(F)z and Ti2C(OH)x(O)y(F)z. Comparing the VB spectra with the DOS calculations show the valance band spectra is actually a mixture of MXene with various terminations of OH, O and F. Before Ar+ sputtering both phases show a large percentage of fluorinated-TiO2 which is due to MXene surface oxidation as well as CHx, C-O and COO groups arising from either surface contaminations or due to drying the etched powders in ethanol after washing the powder of the HF acid. According to the VB spectra, it is shown that the fluorinated TiO2 is actually a mixture of anatase and rutile. The number of layers, n, also plays a role; the lower n, the more the MXene is prone to oxidation.

  • 28.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thörnberg, Jimmy
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    E. J., Moon
    Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
    M., Precner
    Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava 84104, Slovak Republic.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    M. W., Barsoum
    Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of Two-Dimensional Nb1.33C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase2018In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 1, no 6, p. 2455-2460Article in journal (Refereed)
    Abstract [en]

    Introducing point defects in two-dimensional (2D) materials can alter or enhance their properties. Here, we demonstrate how etching a laminated (Nb2/3Sc1/3)2AlC MAX phase (solid solution) of both the Sc and Al atoms results in a 2D Nb1.33C material (MXene) with a large number of vacancies and vacancy clusters. This method is applicable to any quaternary, or higher, MAX phase, wherein one of the transition metals is more reactive than the other and could be of vital importance in applications such as catalysis and energy storage. We also report, for the first time, on the existence of solid solution (Nb2/3Sc1/3)3AlC2 and (Nb2/3Sc1/3)4AlC3 phases.

  • 29.
    Holmin, Susanne
    et al.
    Permascand AB, Sweden; Mid Sweden University, Sweden.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sigurdur Ingason, Arni
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Zimmerman, Erik
    Permascand AB, Sweden.
    Corrosion of ruthenium dioxide based cathodes in alkaline medium caused by reverse currents2014In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 146, p. 30-36Article in journal (Refereed)
    Abstract [en]

    A reverse current obtained during power shutdowns in industrial processes, such as chlor-alkali production or alkaline water electrolysis, is deleterious for hydrogen evolving ruthenium dioxide (Ru02) based cathodes. It has been observed that RuO2 coatings after a power shutdown, necessary for e.g. maintenance, are severely damaged unless polarization rectifiers are employed. In this work we show why these types of cathodes are sensitive to reverse currents, i.e. anodic currents, after hydrogen evolution. RuO2 coatings deposited on nickel substrates were subjected to different electrochemical treatments such as hydrogen evolution, oxygen evolution, or reverse currents in 8 M NaOH at 90 degrees C. Polarity inversion was introduced after hydrogen evolution to simulate the effect of reverse currents. Because of chemical interaction with hydrogen, a significant amount of the RuO2 coating was transformed into hydroxylated species during cathodic polarization. Our study shows that these hydroxylated phases are highly sensitive to electrochemical corrosion during anodic polarization after extended hydrogen evolution.

  • 30.
    Hu, C.
    et al.
    Drexel University, PA 19104 USA.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Drexel University, PA 19104 USA.
    Sun, L.
    Chinese Academic Science, Peoples R China.
    Zhang, J.
    Chinese Academic Science, Peoples R China.
    Yang, J.
    Drexel University, PA 19104 USA.
    Anasori, B.
    Drexel University, PA 19104 USA.
    Wang, J.
    Chinese Academic Science, Peoples R China.
    Sakka, Y.
    National Institute Mat Science, Japan.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Drexel University, PA 19104 USA.
    Mo2Ga2C: a new ternary nanolaminated carbide2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 30, p. 6560-6563Article in journal (Refereed)
    Abstract [en]

    We report the discovery of a new hexagonal Mo2Ga2C phase, wherein two Ga layers - instead of one - are stacked in a simple hexagonal arrangement in between Mo2C layers. It is reasonable to assume this compound is the first of a larger family.

  • 31.
    Ingason, Arni Sigurdur
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mockute, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    Science Institute, University of Iceland, Reykjavik, Iceland.
    Olafsson, S.
    Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland.
    Arnalds, U.
    Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Hjorvarsson, B.
    Department of Physics, Uppsala University, Uppsala, Sweden.
    Persson, Per O Å
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    A Nanolaminated Magnetic Phase: Mn2GaC2014In: Materials Research Letters, ISSN 2166-3831, Vol. 2, no 2, p. 89-93Article in journal (Refereed)
    Abstract [en]

    Layered magnetic materials are fascinating from the point of view of fundamental science as well as applications. Discoveries such as giant magnetoresistance (GMR) in magnetic multilayers have revolutionized data storage and magnetic recording, and concurrently initiated the search for new layered magnetic materials. One group of inherently nanolaminated compounds are the so called Mn+1AXn (MAX) phases. Due to the large number of isostructural compositions, researchers are exploring the wide range of interesting properties, and not primarily functionalization through optimization of structural quality. Magnetic MAX phases have been discussed in the literature, though this is hitherto an unreported phenomenon. However, such materials would be highly interesting, based on the attractive and useful properties attained with layered magnetic materials to date. Here we present a new MAX phase, (Cr1–xMnx)2GeC, synthesized as thin film in heteroepitaxial form, showing single crystal material with unprecedented structural MAX phase quality. The material was identified using first-principles calculations to study stability of hypothetical MAX phases, in an eort to identify a potentially magnetic material. The theory predicts a variety of magnetic behavior depending on the Mn concentration and Cr/Mn atomic conguration within the sublattice. The analyzed thin films display a magnetic signal well above room temperature and with partly ferromagnetic ordering. These very promising results open up a field of new layered magnetic materials, with high potential for electronics and spintronics applications.

  • 32.
    Ingason, Arni Sigurdur
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mockuté, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    Science Institute, University of Iceland, Reykjavik, Iceland.
    Olafsson, S.
    Science Institute, University of Iceland, Reykjavik, Iceland.
    Arnalds, U. B.
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor A.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Hjörvarsson, B.
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetic Self-Organized Atomic Laminate from First Principles and Thin Film Synthesis2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110Article in journal (Refereed)
    Abstract [en]

    he first experimental realization of a magnetic Mn+1AXn (MAX) phase, (Cr0.75Mn0.25)2GeC, is presented, synthesized as a heteroepitaxial single crystal thin film, exhibiting excellent structural quality. This self-organized atomic laminate is based on the well-known Cr2GeC, with Mn, a new element in MAX phase research, substituting Cr. The compound was predicted using first-principles calculations, from which a variety of magnetic behavior is envisaged, depending on the Mn concentration and Cr/Mn atomic configuration within the sublattice. The analyzed thin films display a magnetic signal at room temperature.

  • 33.
    Ingason, Arni Sigurdur
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Pålsson, G. K.
    Uppsala University, Sweden; Institute Laue Langevin, France.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Long-range antiferromagnetic order in epitaxial Mn2GaC thin films from neutron reflectometry2016In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 94, no 2, p. 024416-Article in journal (Refereed)
    Abstract [en]

    The nature of the magnetic structure in magnetic so-called MAX phases is a topic of some controversy. Here we present unpolarized neutron-diffraction data between 3.4 and 290.0 K and momentum transfer between Q = 0.0 and 1.1 angstrom(-1), as well as complementary x-ray-diffraction data on epitaxial thin films of the MAX phase material Mn2GaC. This inherently layered material exhibits neutron-diffraction peaks consistent with long-ranged antiferromagnetic order with a periodicity of two structural unit cells. The magnetic structure is present throughout the measured temperature range. The results are in agreement with first-principles calculations of antiferromagnetic structures for this material where the Mn-C-Mn atomic trilayers are found to be ferromagnetically coupled internally but spin flipped or rotated across the Ga layers. The present findings have significant bearing on the discussion regarding the nature of the magnetic structure in magnetic MAX phases.

  • 34.
    Karlsson, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mockuté, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sigurdur Ingason, Arni
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ta, Huy Q.
    Polish Academic Science, Poland; Sungkyunkwan University, South Korea; Soochow University, Peoples R China; Soochow University, Peoples R China.
    Rummeli, Mark H.
    Polish Academic Science, Poland; Soochow University, Peoples R China; Soochow University, Peoples R China; IFW Dresden, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Residue reduction and intersurface interaction on single graphene sheets2016In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 100, p. 345-350Article in journal (Refereed)
    Abstract [en]

    Large regions of pristine graphene are essential to applications which rely on the ideal graphene properties. Common methods for transferring chemical vapour deposition grown graphene to suitable substrates leaves metal oxide particles and poly(methyl methacrylate) (PMMA) residues on opposing surfaces, which degrade the properties. A common method to reduce the residues include annealing in vacuum or in argon, however, residues remain on the graphene sheet. The present investigation reports on the metal oxide particle ripening and PMMA decomposition on a single graphene sheet during in-situ annealing up to 1300 degrees C in a transmission electron microscope. It is shown that the PMMA residues are increasingly reduced at elevated temperatures although the reduction is strongly correlated to the metal oxide particle coverage on the opposing graphene surface. This is shown to occur as a consequence of an electrostatic interaction between the residues and that this prevents the establishment of large clean areas. (C) 2016 Elsevier Ltd. All rights reserved.

  • 35.
    Khromov, Sergey
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Wang, X.
    Peking University, Peoples R China.
    Yoshikawa, A.
    Chiba University, Japan.
    Monemar, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Correlation between switching to n-type conductivity and structural defects in highly Mg-doped InN2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 23, article id 232102Article in journal (Refereed)
    Abstract [en]

    The effect of Mg doping on the microstructure of InN epitaxial films in relation to their free-charge carrier properties has been investigated by transmission electron microscopy (TEM) and aberration corrected scanning TEM. We observe a direct correlation between Mg concentration and the formation of stacking faults. The threading dislocation density is found to be independent of Mg concentration. The critical Mg concentration for the on-set of stacking faults formation is determined and found to correlate with the switch from p- to n-type conductivity in InN. Potential mechanisms involving stacking faults and point defect complexes are invoked in order to explain the observed conductivity reversal. Finally, the stacking faults are structurally determined and their role in the reduction of the free electron mobility in highly doped InN: Mg is discussed. (C) 2015 AIP Publishing LLC.

  • 36.
    Lai, Chung-Chuan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, O.
    Nucl Research Centre Negev, Israel.
    Caspi, E. N.
    Nucl Research Centre Negev, Israel.
    Ozeri, O.
    Soreq Nucl Research Centre, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 99, p. 157-164Article in journal (Refereed)
    Abstract [en]

    Following our recent discovery of a new nanolaminated carbide, Mo2Ga2C, we herein present a detailed structural and chemical analysis of this phase based on ab initio calculations, X-ray photoelectron spectroscopy, high resolution scanning transmission electron microscopy, and neutron powder diffraction. Calculations suggest an energetically and dynamically stable structure for C in the octahedral sites between the Mo layers, with Ga bilayers - stacked in a simple hexagonal arrangement - between the Mo2C layers. The predicted elastic properties are below those of the related nanolaminate Mo2GaC. The predicted structure, including lattice parameters and atomic positions, is experimentally confirmed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 37.
    Lai, Chung-Chuan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tucker, Mark
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis and characterization of Zr2Al3C4 thin films2015In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 595, p. 142-147Article in journal (Refereed)
    Abstract [en]

    Zr2Al3C4 is an inherently nanolaminated carbide where layers of ZrC alternate with layers of Al3C2. Characterization of bulk samples has shown it has improved damage tolerance and oxidation resistance compared to its binary counterpart ZrC. Though a potential candidate for coatings applied for use in harsh environments, thin films of Zr2Al3C4 have not been reported. We have synthesized epitaxial Zr2Al3C4 thin films by pulsed cathodic arc deposition from three elemental cathodes, and have studied the effect of incident atomic flux ratio, deposition temperature, and choice of substrate on material quality. X-ray diffraction analysis showed that Zr2Al3C4 of the highest structural quality was obtained for growth on 4 H-SiC(001) substrate at 800 degrees C. Also, suppression of competing phases could be achieved on alpha-Al2O3(001) at elevated substrate temperatures. Very similar growth behavior to that of the well-known M(n+1)AX(n) phases - Al supersaturation, binary carbide intergrowth and high sensitivity to choice of substrate - indicates a strong connection between the two families of materials, despite their differences in structure and in chemistry. (C) 2015 Elsevier B.V. All rights reserved.

  • 38.
    Lapauw, T.
    et al.
    Katholieke University of Leuven, Belgium; CEN SCK, Belgium.
    Lambrinou, K.
    CEN SCK, Belgium.
    Cabioch, T.
    University of Poitiers, France.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pesach, A.
    Nucl Research Centre Negev, Israel.
    Rivin, O.
    Nucl Research Centre Negev, Israel.
    Ozeri, O.
    Soreq Nucl Research Centre, Israel.
    Caspi, E. N.
    Nucl Research Centre Negev, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Vleugels, J.
    Katholieke University of Leuven, Belgium.
    Synthesis of the new MAX phase Zr2AlC2016In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 36, no 8, p. 1847-1853Article in journal (Refereed)
    Abstract [en]

    This study reports on the first experimental evidence of the existence of the Zr2AlC MAX phase, synthesised by means of reactive hot pressing of a ZrH2, Al and C powder mixture. The crystal structure of this compound was investigated by X-ray and neutron diffraction. The lattice parameters were determined and confirmed by high-resolution transmission electron microscopy. The effect of varying the synthesis temperature was investigated, indicating a relatively narrow temperature window for the synthesis of Zr2AlC. ZrC was always present as a secondary phase by hot pressing in the 1475-1575 degrees C range.

  • 39.
    Leiqiang, Qin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Fernandez-Rodriguez, Julia
    University of Gothenburg, Sweden.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 2, article id 1703808Article in journal (Refereed)
    Abstract [en]

    MXenes, a young family of 2D transition metal carbides/nitrides, show great potential in electrochemical energy storage applications. Herein, a high performance ultrathin flexible solid-state supercapacitor is demonstrated based on a Mo1.33C MXene with vacancy ordering in an aligned layer structure MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) composite film posttreated with concentrated H2SO4. The flexible solid-state supercapacitor delivers a maximum capacitance of 568 F cm-3, an ultrahigh energy density of 33.2 mWh cm-3 and a power density of 19 470 mW cm-3. The Mo1.33C MXene/PEDOT:PSS composite film shows a reduction in resistance upon H2SO4 treatment, a higher capacitance (1310 F cm-3) and improved rate capabilities than both pristine Mo1.33C MXene and the nontreated Mo1.33C/PEDOT:PSS composite films. The enhanced capacitance and stability are attributed to the synergistic effect of increased interlayer spacing between Mo1.33C MXene layers due to insertion of conductive PEDOT, and surface redox processes of the PEDOT and the MXene.

  • 40.
    Meshkian, Rahele
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Arnalds, U. B.
    University of Iceland, Iceland.
    Magnus, F.
    Uppsala University, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC2015In: APL MATERIALS, ISSN 2166-532X, Vol. 3, no 7, article id 076102Article in journal (Refereed)
    Abstract [en]

    We present synthesis and characterization of a new magnetic atomic laminate: (Mo0.5Mn0.5)(2)GaC. High quality crystalline films were synthesized on MgO(111) substrates at a temperature of similar to 530 degrees C. The films display a magnetic response, evaluated by vibrating sample magnetometry, in a temperature range 3-300 K and in a field up to 5 T. The response ranges from ferromagnetic to paramagnetic with change in temperature, with an acquired 5T-moment and remanent moment at 3 K of 0.66 and 0.35 mu(B) per metal atom (Mo and Mn), respectively. The remanent moment and the coercive field (0.06 T) exceed all values reported to date for the family of magnetic laminates based on so called MAX phases.

  • 41.
    Meshkian, Rahele
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C2015In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 108, p. 147-150Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis of a two-dimensional transition metal carbide, Mo2C, (MXene) obtained by immersing Mo2Ga2C thin films in hydrofluoric acid. Experimental evidences for neither synthesis of a Mo-based MXene nor selective etching of Ga from an atomic nanolaminate have previously been presented. MXene formation is verified through X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. This discovery unlocks new potential applications for Mo-based MXenes in a host of applications, from thermoelectrics to catalysis and energy storage.

  • 42.
    Meshkian, Rahele
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sigurdur Ingason, Arni
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Arnalds, Unnar B.
    University of Iceland, Iceland.
    Magnus, Fridrik
    Uppsala University, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Theoretical stability, thin film synthesis and transport properties of the Mon+1GaCn MAX phase2015In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 9, no 3, p. 197-201Article in journal (Refereed)
    Abstract [en]

    The phase stability of Mon +1GaCn has been investigated using ab-initio calculations. The results indicate stability for the Mo2GaC phase only, with a formation enthalpy of 0.4 meV per atom. Subsequent thin film synthesis of Mo2GaC was performed through magnetron sputtering from elemental targets onto Al2O3 [0001], 6H-SiC [0001] and MgO [111] substrates within the temperature range of 500 degrees C and 750 degrees C. High structural quality films were obtained for synthesis on MgO [111] substrates at 590 degrees C. Evaluation of transport properties showed a superconducting behavior with a critical temperature of approximately 7 K, reducing upon the application of an external magnetic field. The results point towards the first superconducting MAX phase in thin film form.

  • 43.
    Mockute, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Emmerlich, Jens
    Materials Chemistry, RWTH-Aachen, D-52074 Aachen, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Schneider, Jochen M.
    Materials Chemistry, RWTH-Aachen, D-52074 Aachen, Germany.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nanolaminated (Cr,Mn)2AlC alloys by magnetron sputtering and ab initio calculationsManuscript (preprint) (Other academic)
    Abstract [en]

    We present an ab initio theoretical analysis of the temperature-dependent stability of hexagonal inherently nanolaminated (Cr1-xMnx)2AlC. The results indicate energetic stability over the composition range x = 0.0 to 0.5 for temperatures 600 to 900 K. Corresponding alloy thin films were grown by magnetron sputtering from four elemental targets. X-ray diffraction in combination with analytical transmission electron microscopy including electron energy-loss spectroscopy and energy dispersive X-ray spectroscopy analysis revealed that the films were epitaxial (0001)-oriented single crystals with x up to 0.16.

  • 44.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Emmerlich, Jens
    Rhein Westfal TH Aachen, Germany .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Schneider, Jochen M
    Rhein Westfal TH Aachen, Germany .
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Synthesis and ab initio calculations of nanolaminated (Cr,Mn)2AlC compounds2013In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 87, no 9Article in journal (Refereed)
    Abstract [en]

    We present an ab initio theoretical analysis of the temperature-dependent stability of inherently nanolaminated (Cr1−xMnx)2AlC. The results indicate energetic stability over the composition range x = 0.0 to 0.5 for temperatures ≥600 K. Corresponding thin film compounds were grown by magnetron sputtering from four elemental targets. X-ray diffraction in combination with analytical transmission electron microscopy, including electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy analysis, revealed that the films were epitaxial (0001)-oriented single-crystals with x up to 0.16.

  • 45.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    O A Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations2013In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 48, no 10, p. 3686-3691Article in journal (Refereed)
    Abstract [en]

    Substitution of C with O in hexagonal inherently nanolaminated Ti2AlC has been studied experimentally and theoretically. Ti2Al(C1−x O x ) thin films with x ≤ 0.52 are synthesized by both cathodic arc deposition with the uptake of residual gas O, and solid-state reaction between understoichiometric TiC y and Al2O3(0001) substrates. The compositional analysis is made by analytical transmission electron microscopy, including electron energy loss spectroscopy. Furthermore, predictive ab initio calculations are performed to evaluate the influence of substitutional O on the shear stress at different strains for slip on the (0001) basal plane in the [−1010] and [1−210] directions.

  • 46.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Moon, E. J.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Yan, M.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Anasori, B.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    May, S. J.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Barsoum, M. W.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Solid Solubility and Magnetism upon Mn Incorporation in the Bulk Ternary Carbides Cr2AlC and Cr2GaC2015In: Materials Research Letters, ISSN 2166-3831, Vol. 3, no 1, p. 16-22Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the bulk synthesis of (Cr1-xMnx)(2)AlC and (Cr1-yMny)(2)GaC MAX phases. Scanning electron and transmission electron microscopy, in combination with energy-dispersive X-ray spectroscopy performed locally on MAX phase grains, revealed x and y to be 0.06 (3 at%) and 0.3 (15 at%), respectively. The introduction of Mn into the structure did not result in appreciable changes in the c-lattice constants. Vibrating sample magnetometry measurements suggest that bulk (Cr0.7Mn0.3)(2)GaC may be magnetic.

  • 47.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Arts and Sciences.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    Uppsala University, Sweden .
    Olafsson, S.
    University of Iceland, Iceland .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structural and magnetic properties of (Cr1-xMnx)(5)Al-8 solid solution and structural relation to hexagonal nanolaminates2014In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 49, no 20, p. 7099-7104Article in journal (Refereed)
    Abstract [en]

    Electron microscopy is used to reveal the competitive epitaxial growth of bcc structure (Cr1-x Mn (x) )(5)Al-8 and (Cr1-y Mn (y) )(2)AlC [M (n+1)AX (n) (MAX)] phase during both magnetron sputtering and arc deposition. X-ray diffraction theta-2 theta measurements display identical peak positions of (000n)-oriented MAX phase and (Cr1-x Mn (x) )(5)Al-8, due to the interplanar spacing of (Cr1-x Mn (x) )(5)Al-8 that matches exactly half a unit cell of (Cr1-y Mn (y) )(2)AlC. Vibrating sample magnetometry shows that a thin film exclusively consisting of (Cr1-x Mn (x) )(5)Al-8 exhibits a magnetic response, implying that the potential presence of this phase needs to be taken into consideration when evaluating the magnetic properties of (Cr, Mn)(2)AlC.

  • 48.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden/University of Iceland, Iceland .
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Olafsson, S.
    University of Iceland, Iceland .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Synthesis and characterization of arc deposited magnetic (Cr,Mn)2AlC MAX phase films2014In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 8, no 5, p. 420-423Article in journal (Refereed)
    Abstract [en]

    (Cr1-xMnx)2AlC MAX phase thin films were synthesized by cathodic arc deposition. Scanning transmission electron microscopy including local energy dispersive X-ray spectroscopy analysis of the as-deposited films reveals a Mn incorporation of 10 at.% in the structure, corresponding to x = 0.2. Magnetic properties were characterized with vibrating sample magnetometry, revealing a magnetic response up to at least room temperature, thus verifying previous theoretical predictions of an antiferromagnetic or ferromagnetic ground state for Cr2AlC upon alloying with Mn.

  • 49.
    Näslund, Lars-Åke
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Holmin, Susanne
    Permascand AB, Ljungaverk, Sweden; Mid Sweden University, Sundsvall, Sweden.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Formation of RuO(OH)(2) on RuO2-Based Electrodes for Hydrogen Production2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 28, p. 15315-15323Article in journal (Refereed)
    Abstract [en]

    The catalytic and durable electrode coating of ruthenium dioxide (RuO2), applied on nickel (Ni) substrates, is today utilized as electrocatalytic cathodes for hydrogen production, e.g., in the chlor-alkali process and alkaline water electrolysis. The drawback is, however, the sensitivity to reverse currents obtained during power shutdowns, e.g., at maintenance, where the RuO2-based electrodes can be severely damaged unless polarization rectifiers are employed. Through the material characterization techniques X-ray diffraction and X-ray photoelectron spectroscopy, we can now reveal that RuO2 coatings, when exposed to hydrogen evolution at industrially relevant conditions, transforms into ruthenium oxyhydroxide (RuO(OH)(2)). The study further shows that as the hydrogen evolution proceeds the formed RuO(OH)(2) reduces to metallic ruthenium (Ru).

  • 50.
    Näslund, Lars-Åke
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sánchez-Sánchez, Carlos M.
    University of Alicante, Spain .
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Bäckström, Joakim
    Permascand AB, Ljungaverk, Sweden.
    Herrero, Enrique
    University of Alicante, Spain .
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Holmin, Susanne
    Permascand AB, Ljungaverk, Sweden.
    The Role of TiO2 Doping on RuO2-Coated Electrodes for the Water Oxidation Reaction2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 12, p. 6126-6135Article in journal (Refereed)
    Abstract [en]

    Electrochemical water splitting into H-2 and O-2 presents a significant and challenging energy loss due to the high overpotential required at the anode. Today, in industrially relevant applications, dimensionally stable anodes (DSA) based on the electrocatalytic active RuO2 are conventionally utilized. To enhance the resistance against corrosion, incorporation of TiO2 in the RuO2-coated electrodes is widely employed. In the present work we have used scanning electrochemical microscopy (SECM) to demonstrate that TiO2-doped RuO2-coated electrodes, in addition to being more durable, also show an electrocatalytic activity that is, on average, 13% higher as compared to the pure RuO2-coated electrodes. We also demonstrate that cracks in the pure RuO2 coating are the most active zones, probably because Ti from the Ti support has diffused into the first applied layer of the RuO2 coating. To reveal the nature of this enhanced activity for water oxidation displayed on TiO2-doped RuO2 electrodes, we have employed X-ray photoelectron spectroscopy (XPS) for material characterization. The results show that the electrocatalytic activity enhancement displayed on the mixed (Ru1-x:Ti-x)O-2 coating is promoted through a charge transfer from the RuO2 to the TiO2, which provides new and more reactive sites designated as activated RuO2 delta+.

12 1 - 50 of 92
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf