liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Håkan
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Hilding, Daniel
    DYNAmore Nordic AB, Brigadgatan 5, 587 58 Linköping, Sweden.
    Schill, Mikael
    DYNAmore Nordic AB, Brigadgatan 5, 587 58 Linköping, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    System level co-simulation of a control valve and hydraulic cylinder circuit in a hydraulic percussion unit2017In: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden / [ed] Petter Krus, Liselott Ericson and Magnus Sethson, Linköping: Linköping University Electronic Press, 2017, Vol. 144, p. 225-235Conference paper (Refereed)
    Abstract [en]

    In this study a previously developed co-simulation method that is based on a 1D system model representing the fluid components of a hydraulic machinery, within which structural 3D Finite Element (FE) models can be incorporated for detailed simulation of specific sub-models or complete structural assemblies, is further developed. The fluid system model consists of ordinary differential equation sub-models that are computationally very inexpensive, but still represents the fluid dynamics very well. The co-simulation method has been shown to work very well for a simple model representing a hydraulic driven machinery. A more complex model was set up in this work, in which two cylinders in the hydraulic circuit were evaluated. Such type of models, including both the main piston and control valves, are necessary as they represent the real application to a further extent than the simple model, of only one cylinder. Two models have been developed and evaluated, from the simple rigid body representation of the structural mechanics model, to the more complex model using linear elastic representation. The 3D FE-model facilitates evaluation of displacements, stresses, and strains on a local level of the model. The results can be utilised for fatigue assessment, wear analysis and for predictions of noise radiation.

  • 2.
    Busse, Christian
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Gustafsson, David
    Siemens Ind Turbomachinery AB, Sweden.
    Rasmusson, Patrik
    Siemens Ind Turbomachinery AB, Sweden.
    Sjodin, Bjorn
    Siemens Ind Turbomachinery AB, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Three-Dimensional LEFM Prediction of Fatigue Crack Propagation in a Gas Turbine Disk Material at Component Near Conditions2016In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 138, no 4, article id 042506Article in journal (Refereed)
    Abstract [en]

    In this paper, the possibility to use linear elastic fracture mechanics (LEFM), with and without a superimposed residual stress field, to predict fatigue crack propagation in the gas turbine disk material Inconel 718 has been studied. A temperature of 400 degrees C and applied strain ranges corresponding to component near conditions have been considered. A three-dimensional crack propagation software was used for determining the stress intensity factors (SIFs) along the crack path. In the first approach, a linear elastic material behavior was used when analyzing the material response. The second approach extracts the residual stresses from an uncracked model with perfectly plastic material behavior after one loading cycle. As a benchmark, the investigated methods are compared to experimental tests, where the cyclic lifetimes were calculated by an integration of Paris law. When comparing the results, it can be concluded that the investigated approaches give good results, at least for longer cracks, even though plastic flow was taking place in the specimen. The pure linear elastic simulation overestimates the crack growth for all crack lengths and gives conservative results over all considered crack lengths. Noteworthy with this work is that the 3D-crack propagation could be predicted with the two considered methods in an LEFM context, although plastic flow was present in the specimens during the experiments.

  • 3.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Arts and Sciences. Linköping University, Faculty of Science & Engineering.
    Lindström, Thomas
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Effect of Additive Manufacturing on Fatigue Crack Propagation of a Gas Turbine Superalloy2019In: Structural Integrity Procedia, Elsevier, 2019Conference paper (Refereed)
  • 4.
    Ewest, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering. Siemens Ind Turbomachinery AB,Finspång, Sweden.
    Almroth, P.
    Siemens Ind Turbomachinery AB, Finspång, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Sjodin, B.
    Siemens Ind Turbomachinery AB, Finspång, Sweden.
    Fatigue crack propagation in a ductile superalloy at room temperature and extensive cyclic plastic flow2015In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 80, p. 40-49Article in journal (Refereed)
    Abstract [en]

    Fatigue crack propagation experiments under both force and displacement control have been performed on the wrought superalloy Haynes 230 at room temperature, using a single edge notched specimen. The force controlled tests are nominally elastic, and the displacement controlled tests have nominally large plastic hysteresis at the beginning of the tests, but saturates towards linear elastic conditions as the crack grows. As some tests are in the large scale yielding regime, a non-linear fracture mechanics approach is used to correlate crack growth rates versus the fracture parameter Delta J. It is shown that crack closure must be accounted for, to correctly model the crack growth seen in all the tests in a unified manner. For the force controlled small scale yielding tests the Newman crack closure model was used. The Newman equation is however not valid for large nominal cyclic plasticity, instead the crack closure in the displacement controlled tests is extracted from the test data. A good agreement between all tests is shown, when closure is accounted for and effective values of Delta J are used.

  • 5.
    Ewest, Daniel
    et al.
    Siemens Ind Turbomachinery AB, Sweden.
    Almroth, Per
    Siemens Ind Turbomachinery AB, Sweden.
    Sjodin, Bjorn
    Siemens Ind Turbomachinery AB, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    COMPARISON BETWEEN LINEAR AND NON-LINEAR FRACTURE MECHANICS ANALYSIS OF EXPERIMENTAL DATA FOR THE DUCTILE SUPERALLOY HAYNES 2302015In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 7A, ASME Press, 2015, no V07AT28A014Conference paper (Refereed)
    Abstract [en]

    Vith increasing use of renewable energy sources, an industrial us turbine is often a competitive solution to balance the power rid. However, life robustness approaches for gas turbine corn9nents operating under increasingly cyclic conditions, is a chalmging task. Ductile superalloys, as Haynes 230, are often used n stationary gas turbine hot parts such as combustors. The main cad for such components is due to non -homogeneous thermal xpansion within or between parts. As the material is ductile Jere is considerable redistribution of stresses and strains due to nelastic deformations during the crack initiation phase. There ore, the subsequent crack growth occurs through a material with :gnificant residual stresses and strains. In this work, fatigue ack propagation experiments, including the initiation phase, ave been performed on a single edge notched specimen under train controlled conditions. The test results are compared to -acture mechanics analyses using the linear AK and the non near AJ approaches, and an attempt to quantify the difference 2 terms of a life prediction is made. For the tested notched gemetry, material and strain ranges, the difference in the results using AKeff or ATeff are larger than the scatter seen when fitting the model to the experimental data. The largest differences can be found for short crack lengths, when the cyclic plastic work is the largest. The AJ approach clearly shows better agreement with the experimental results in this regime.

  • 6.
    Ewest, Daniel
    et al.
    Siemens Industrial Turbomachinery AB, Finspång, Sweden .
    Almroth, Per
    Siemens Industrial Turbomachinery AB, Finspång, Sweden .
    Sjödin, Björn
    Siemens Industrial Turbomachinery AB, Finspång, Sweden .
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Comparison between linear and non-linear fracture mechanics analysis of experimental data for the ductile superalloy Haynes 2302016In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 138, no 6, p. 062101-1-062101-7Article in journal (Refereed)
    Abstract [en]

    With increasing use of renewable energy sources, an industrial gas turbine is often a competitive solution to balance the power grid. However, life robustness approaches for gas turbine components operating under increasingly cyclic conditions are a challenging task. Ductile superalloys, as Haynes 230, are often used in stationary gas turbine hot parts such as combustors. The main load for such components is due to nonhomogeneous thermal expansion within or between parts. As the material is ductile, there is considerable redistribution of stresses and strains due to inelastic deformations during the crack initiation phase. Therefore, the subsequent crack growth occurs through a material with significant residual stresses and strains. In this work, fatigue crack propagation experiments, including the initiation phase, have been performed on a single edge notched specimen under strain controlled conditions. The test results are compared to fracture mechanics analyses using the linear ΔK and the nonlinear ΔJ approaches, and an attempt to quantify the difference in terms of a life prediction is made. For the tested notched geometry, material, and strain ranges, the difference in the results using ΔKeff or ΔJeff is larger than the scatter seen when fitting the model to the experimental data. The largest differences can be found for short crack lengths, when the cyclic plastic work is the largest. The ΔJ approach clearly shows better agreement with the experimental results in this regime.

  • 7.
    Johansson, Sten
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Kanesund, Jan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Investigation of localized damage in single crystals subjected to thermalmechanical fatigue (TMF)2010In: Procedia Engineering, ISSN 1877-7058, Vol. 2, no 1, p. 657-666Article in journal (Refereed)
    Abstract [en]

    The deformation and damage mechanisms arising during thermalmechanical fatigue (TMF) of a CMSX-4 and high-Cr single crystal super alloy, SCA425 have been investigated and a completely new failure mechanism involving recrystallization and oxidation has been discovered. The primary deformation mechanism is slip along the {111} planes. The deformation is highly localised to a number of bands, where recrystallization eventually occur during the thermalmechanical fatigue process. When the final failure occurs along these recrystallized bands it is accompanied by the formation of voids due to the presence of grain boundaries. The damage process is further enhanced by oxidation, since recrystallization occurs more easily in the gamma depleted zone under the oxide scale. The macroscopic as well as the microscopic damage and fracture mechanisms are varying with alloy and heat treatment. The aim of this work is to further investigate, discuss the local damage mechanisms responsible for TMF damage. Of special interest is the localisation of damage into twins and extremely localized rafted deformation bands.

  • 8.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Crystal plasticity and crack initiation in a single-crystal nickel-base superalloy: Modelling, evaluation and applications2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this dissertation the work done in the projects KME-410/502 will be presented.The overall objective in these projects is to evaluate and develop tools for designingagainst fatigue in single-crystal nickel-base superalloys in gas turbines. Experimentshave been done on single-crystal nickel-base superalloy specimens in order toinvestigate the mechanical and fatigue behaviour of the material. The constitutivebehaviour has been modelled and veried by FE-simulations of the experiments.Furthermore, the microstructural degradation during long-time ageing has been investigatedwith respect to the material's yield limit. The eect has been includedin the constitutive model by lowering the resulting yield limit. Moreover, the fatiguecrack initiation of a component has been analysed and modelled by using acritical plane approach in combination with a critical distance method. Finally, asan application, the derived single-crystal model was applied to all the individualgrains in a coarse grained specimen to predict the dispersion in fatigue crack initiationlife depending on random grain distributions.

    This thesis is divided into three parts. In the rst part the theoretical framework,based upon continuum mechanics, crystal plasticity, the critical plane approachand the critical distance method, is derived. This framework is then used in thesecond part, which consists of six included papers. Finally, in the third part, detailsof the used numerical procedures are presented.

    List of papers
    1. Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry
    Open this publication in new window or tab >>Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry
    Show others...
    2009 (English)In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 47, no 2, p. 366-372Article in journal (Refereed) Published
    Abstract [en]

    The constitutive behaviour at room temperature of a single-crystal nickel-base superalloy is presented in a new model. This model is based on crystal plasticity and takes Schmid- as well as non-Schmid stresses, elastic anisotropy and tension/compression asymmetry into account. By comparison with uniaxial tensile and compressive tests, the model is shown to reproduce the real behaviour well, including the tension/compression asymmetry. The model also shows that typically encountered deviations in orientations ofcastings have a non-negligible influence on stiffness and yield limit, which must be taken into account for industrial applications.

    Keywords
    Tension/compression asymmetry, Single-crystal superalloy, Crystal plasticity, Yield surface
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-50547 (URN)10.1016/j.commatsci.2009.08.012 (DOI)
    Available from: 2009-10-12 Created: 2009-10-12 Last updated: 2017-12-12
    2. Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition
    Open this publication in new window or tab >>Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition
    Show others...
    2010 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, no 15, p. 4986-4997Article in journal (Refereed) Published
    Abstract [en]

    The mechanical behaviour at room temperature of a single-crystal superalloy exposed to long term ageing at elevated temperature has been investigated, a topic important for the material’s resistance to thermal-mechanical fatigue. Specimens with several different crystallographic orientations were plastically deformed in either tension or compression before and after the long term furnace exposure. While the thermally activated degradation of the microstructure causes a reduction in yield limit of up to 25% for specimens initially deformed in the |001 and |011| directions, none or only moderate reduction was seen for specimens initially deformed along the |111| direction. This can be explained by the strong correlation between yield limit reduction and the amount of γ coarsening. By introducing an isotropic degradation function in a newly developed crystal plasticity model, the constitutive behaviour of both virgin and degraded materials has been described with good agreement with the experimental results.

    Place, publisher, year, edition, pages
    Elsevier, 2010
    Keywords
    Deformation mechanisms, Rafting/Coarsening, Tension/compression asymmetry, Single-crystal superalloy
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-56590 (URN)10.1016/j.actamat.2010.05.032 (DOI)000280570500008 ()
    Available from: 2010-05-25 Created: 2010-05-25 Last updated: 2017-12-12
    3. Fatigue crack initiation in a notched single-crystal superalloy component
    Open this publication in new window or tab >>Fatigue crack initiation in a notched single-crystal superalloy component
    Show others...
    2010 (English)In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 2, no 1, p. 1067-1075Article in journal (Refereed) Published
    Abstract [en]

    In this paper, the fatigue crack initiation in notched single-crystal test specimens of material MD2 is investigated and analysed. A critical plane approach is adopted, in which the total strain ranges on the discrete slip planes are evaluated. Furthermore, a Coffin-Manson type of expression is used to describe the number of cycles to fatigue crack initiation. This relation is determined from a set of smooth test specimens loaded uniaxially in the [001], [011] and directions at 500 °C with Rε=−1. The numerical procedure is then applied to a series of experiments, in which notched single-crystal test specimens were exposed to uniaxial cyclic loading in the [001] direction at 500 °C with Rε=0.

    Place, publisher, year, edition, pages
    Elsevier, 2010
    Keywords
    Fatigue initiation; Low cycle fatigue; Critical plane approach; Single-crystal superalloy
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-56588 (URN)10.1016/j.proeng.2010.03.115 (DOI)
    Available from: 2010-05-25 Created: 2010-05-25 Last updated: 2017-12-12Bibliographically approved
    4. A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components
    Open this publication in new window or tab >>A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components
    2011 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 33, no 10, p. 1351-1359Article in journal (Refereed) Published
    Abstract [en]

    The fatigue crack initiation in notched single-crystal components of material MD2 is investigated and analysed. A critical plane approach in combination with a critical distance method has been adopted, in which the total shear strain ranges on the discrete crystallographic slip planes are evaluated. To determine the critical distance two approaches were evaluated, a mean value approach and a cycle dependent approach. Furthermore, a Coffin-Manson type of expression (derived from the results of a set of 12 smooth specimens) is used to predict the number of cycles to fatigue crack initiation. The numerical procedure is applied to a series of experiments, in which notched single-crystal components were exposed to uniaxial cyclic loading in the nominal [001] crystal direction at 500 degrees C with R(epsilon) = 0. A good correlation between the experimental results and the simulated results was found.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    Single-crystal superalloy; Fatigue crack initiation; Critical plane approach; Notch correction; Critical distance theory
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-69763 (URN)10.1016/j.ijfatigue.2011.05.009 (DOI)000292795100002 ()
    Available from: 2011-08-10 Created: 2011-08-08 Last updated: 2017-12-08Bibliographically approved
    5. Evaluation of Fatigue Crack Initiation in a Notched Single-crystal Superalloy Component
    Open this publication in new window or tab >>Evaluation of Fatigue Crack Initiation in a Notched Single-crystal Superalloy Component
    Show others...
    2011 (English)In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 10, p. 619-624Article in journal (Refereed) Published
    Abstract [en]

    The fatigue crack initiation in a notched single-crystal nickel-base superalloy component at 500 °C was investigated and analysed. A critical plane approach in combination with a critical distance method has been adopted, in which the total shear strain ranges on the discrete slip planes are evaluated. Furthermore, a Coffin-Manson type of expression is used to predict the number of cycles to fatigue crack initiation. The experimental test specimens were studied by microscopy to determine on which crystallographic plane the fatigue initiation occurred. A good correlation between the experimental results and the simulated results were found.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    single-crystal superalloy, fatigue crack initiation, critical plane approach, notch correction, critical distance theory
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70548 (URN)10.1016/j.proeng.2011.04.103 (DOI)
    Available from: 2011-09-12 Created: 2011-09-12 Last updated: 2017-12-08
    6. The effect of random grain distributions on fatigue crack initiation in a notched coarse grained superalloy specimen
    Open this publication in new window or tab >>The effect of random grain distributions on fatigue crack initiation in a notched coarse grained superalloy specimen
    Show others...
    2012 (English)In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 51, no 1, p. 273-280Article in journal (Refereed) Published
    Abstract [en]

    Coarse grained superalloys are of large interest in high temperature applications, and can be found in e.g.gas turbine components, where great care must be given with respect to high temperature fatigue. Due tothe large grain size, the material behaviour at e.g. sharp notches cannot be considered homogeneous. As aconsequence, the fatigue behaviour is likely to expose a large variation. In order to numerically investigatethis variation, a Monte Carlo analysis has been carried out by 100 FE-simulations of notched specimens,where placements and orientations of the grains were randomised. Furthermore, each grain wasmodelled as a unique single-crystal, displaying both anisotropic elastic and plastic behaviour and tension/compression asymmetry. The effect of randomness was investigated by the obtained dispersion infatigue crack initiation life. It was concluded that the fatigue life behaviour of coarse grained nickel-basesuperalloys may show a considerable variation, which cannot be captured by one single deterministicanalysis based on data for a homogenised material. Furthermore, the dispersion is of such a magnitudethat it needs to be taken into account in industrial applications where highly stressed coarse grainedmaterials are used.

    Place, publisher, year, edition, pages
    Elsevier, 2012
    Keywords
    Coarse grained superalloy, Fatigue crack initiation, Critical plane approach, Crystal plasticity, Monte Carlo analysis
    National Category
    Applied Mechanics
    Identifiers
    urn:nbn:se:liu:diva-72092 (URN)10.1016/j.commatsci.2011.07.054 (DOI)000296214300034 ()
    Note
    Funding agencies|Swedish Research Council| 60628701 |Siemens Industrial Turbomachinery AB in Sweden||Swedish Energy Agency via the Research Consortium of Materials Technology for Thermal Energy Processes| KME-502 |National Supercomputer Centre in Linkoping, Sweden||Available from: 2011-11-16 Created: 2011-11-16 Last updated: 2017-12-08Bibliographically approved
  • 9.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Evaluation of Thermomechanical Fatigue Crack Initiation in a Single-Crystal Superalloy2015In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 7A, ASME Press, 2015, Vol. 7AConference paper (Refereed)
    Abstract [en]

    In this study the thermomechanical fatigue (TMF) crack initiation of the single-crystal nickel-base superalloy MD2 is investigated and evaluated. A series of experiments are performed of smooth specimens loaded in the nominal [001] and [011] crystal orientations, subjected to both in-phase and out-of-phase TMF loading conditions. Considering the inherent internal structure of crystallographic slip planes in single-crystals, a number of critical-plane approaches are evaluated to enable a good description of the TMF crack initiation. These are evaluated using finite element simulations and a post-process, in which crystallographic entities are extracted and compared to the experimental TMF life. A good correlation is achieved for two of the critical-plane approaches. These are able to predict the TMF crack initiation taking into account the elastic and plastic anisotropy, the tension/compression asymmetry and the creep relaxation present in the material.

  • 10.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics . Linköping University, The Institute of Technology.
    Modelling of constitutive and fatigue behaviour of a single-crystal nickel-base superalloy2010Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this licentiate thesis the work done in the project KME410 will be presented. The overall objective of this project is to evaluate and develop tools for designing against fatigue in single-crystal nickel-base superalloys in gas turbines. Experiments have been done on single-crystal nickel-base superalloy specimens in order to investigate the mechanical behaviour of the material. The constitutive behaviour has been modelled and verified by simulations of the experiments. Furthermore, the  microstructural degradation during long-time ageing has been investigated with  respect to the component’s yield limit. The effect has been included in the  constitutive model by lowering the resulting yield limit. Finally, the fatigue crack  initiation of a component has been analysed and modelled by using a critical plane approach.

    This thesis is divided into three parts. In the first part the theoretical framework, based upon continuum mechanics, crystal plasticity and the critical plane approach, is derived. This framework is then used in the second part, which consists of three included papers. Finally, in the third part, details are presented of the used  numerical procedures.

    List of papers
    1. Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry
    Open this publication in new window or tab >>Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry
    Show others...
    2009 (English)In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 47, no 2, p. 366-372Article in journal (Refereed) Published
    Abstract [en]

    The constitutive behaviour at room temperature of a single-crystal nickel-base superalloy is presented in a new model. This model is based on crystal plasticity and takes Schmid- as well as non-Schmid stresses, elastic anisotropy and tension/compression asymmetry into account. By comparison with uniaxial tensile and compressive tests, the model is shown to reproduce the real behaviour well, including the tension/compression asymmetry. The model also shows that typically encountered deviations in orientations ofcastings have a non-negligible influence on stiffness and yield limit, which must be taken into account for industrial applications.

    Keywords
    Tension/compression asymmetry, Single-crystal superalloy, Crystal plasticity, Yield surface
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-50547 (URN)10.1016/j.commatsci.2009.08.012 (DOI)
    Available from: 2009-10-12 Created: 2009-10-12 Last updated: 2017-12-12
    2. Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition
    Open this publication in new window or tab >>Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition
    Show others...
    2010 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, no 15, p. 4986-4997Article in journal (Refereed) Published
    Abstract [en]

    The mechanical behaviour at room temperature of a single-crystal superalloy exposed to long term ageing at elevated temperature has been investigated, a topic important for the material’s resistance to thermal-mechanical fatigue. Specimens with several different crystallographic orientations were plastically deformed in either tension or compression before and after the long term furnace exposure. While the thermally activated degradation of the microstructure causes a reduction in yield limit of up to 25% for specimens initially deformed in the |001 and |011| directions, none or only moderate reduction was seen for specimens initially deformed along the |111| direction. This can be explained by the strong correlation between yield limit reduction and the amount of γ coarsening. By introducing an isotropic degradation function in a newly developed crystal plasticity model, the constitutive behaviour of both virgin and degraded materials has been described with good agreement with the experimental results.

    Place, publisher, year, edition, pages
    Elsevier, 2010
    Keywords
    Deformation mechanisms, Rafting/Coarsening, Tension/compression asymmetry, Single-crystal superalloy
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-56590 (URN)10.1016/j.actamat.2010.05.032 (DOI)000280570500008 ()
    Available from: 2010-05-25 Created: 2010-05-25 Last updated: 2017-12-12
    3. Fatigue crack initiation in a notched single-crystal superalloy component
    Open this publication in new window or tab >>Fatigue crack initiation in a notched single-crystal superalloy component
    Show others...
    2010 (English)In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 2, no 1, p. 1067-1075Article in journal (Refereed) Published
    Abstract [en]

    In this paper, the fatigue crack initiation in notched single-crystal test specimens of material MD2 is investigated and analysed. A critical plane approach is adopted, in which the total strain ranges on the discrete slip planes are evaluated. Furthermore, a Coffin-Manson type of expression is used to describe the number of cycles to fatigue crack initiation. This relation is determined from a set of smooth test specimens loaded uniaxially in the [001], [011] and directions at 500 °C with Rε=−1. The numerical procedure is then applied to a series of experiments, in which notched single-crystal test specimens were exposed to uniaxial cyclic loading in the [001] direction at 500 °C with Rε=0.

    Place, publisher, year, edition, pages
    Elsevier, 2010
    Keywords
    Fatigue initiation; Low cycle fatigue; Critical plane approach; Single-crystal superalloy
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-56588 (URN)10.1016/j.proeng.2010.03.115 (DOI)
    Available from: 2010-05-25 Created: 2010-05-25 Last updated: 2017-12-12Bibliographically approved
  • 11.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Aspenberg, David
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Gustafsson, David
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    The effect of random grain distributions on fatigue crack initiation in a notched coarse grained superalloy specimen2012In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 51, no 1, p. 273-280Article in journal (Refereed)
    Abstract [en]

    Coarse grained superalloys are of large interest in high temperature applications, and can be found in e.g.gas turbine components, where great care must be given with respect to high temperature fatigue. Due tothe large grain size, the material behaviour at e.g. sharp notches cannot be considered homogeneous. As aconsequence, the fatigue behaviour is likely to expose a large variation. In order to numerically investigatethis variation, a Monte Carlo analysis has been carried out by 100 FE-simulations of notched specimens,where placements and orientations of the grains were randomised. Furthermore, each grain wasmodelled as a unique single-crystal, displaying both anisotropic elastic and plastic behaviour and tension/compression asymmetry. The effect of randomness was investigated by the obtained dispersion infatigue crack initiation life. It was concluded that the fatigue life behaviour of coarse grained nickel-basesuperalloys may show a considerable variation, which cannot be captured by one single deterministicanalysis based on data for a homogenised material. Furthermore, the dispersion is of such a magnitudethat it needs to be taken into account in industrial applications where highly stressed coarse grainedmaterials are used.

  • 12.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan J.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry2009In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 47, no 2, p. 366-372Article in journal (Refereed)
    Abstract [en]

    The constitutive behaviour at room temperature of a single-crystal nickel-base superalloy is presented in a new model. This model is based on crystal plasticity and takes Schmid- as well as non-Schmid stresses, elastic anisotropy and tension/compression asymmetry into account. By comparison with uniaxial tensile and compressive tests, the model is shown to reproduce the real behaviour well, including the tension/compression asymmetry. The model also shows that typically encountered deviations in orientations ofcastings have a non-negligible influence on stiffness and yield limit, which must be taken into account for industrial applications.

  • 13.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition2010In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, no 15, p. 4986-4997Article in journal (Refereed)
    Abstract [en]

    The mechanical behaviour at room temperature of a single-crystal superalloy exposed to long term ageing at elevated temperature has been investigated, a topic important for the material’s resistance to thermal-mechanical fatigue. Specimens with several different crystallographic orientations were plastically deformed in either tension or compression before and after the long term furnace exposure. While the thermally activated degradation of the microstructure causes a reduction in yield limit of up to 25% for specimens initially deformed in the |001 and |011| directions, none or only moderate reduction was seen for specimens initially deformed along the |111| direction. This can be explained by the strong correlation between yield limit reduction and the amount of γ coarsening. By introducing an isotropic degradation function in a newly developed crystal plasticity model, the constitutive behaviour of both virgin and degraded materials has been described with good agreement with the experimental results.

  • 14.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Segersäll, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Evaluation of Fatigue Crack Initiation in a Notched Single-crystal Superalloy Component2011In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 10, p. 619-624Article in journal (Refereed)
    Abstract [en]

    The fatigue crack initiation in a notched single-crystal nickel-base superalloy component at 500 °C was investigated and analysed. A critical plane approach in combination with a critical distance method has been adopted, in which the total shear strain ranges on the discrete slip planes are evaluated. Furthermore, a Coffin-Manson type of expression is used to predict the number of cycles to fatigue crack initiation. The experimental test specimens were studied by microscopy to determine on which crystallographic plane the fatigue initiation occurred. A good correlation between the experimental results and the simulated results were found.

  • 15.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components2011In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 33, no 10, p. 1351-1359Article in journal (Refereed)
    Abstract [en]

    The fatigue crack initiation in notched single-crystal components of material MD2 is investigated and analysed. A critical plane approach in combination with a critical distance method has been adopted, in which the total shear strain ranges on the discrete crystallographic slip planes are evaluated. To determine the critical distance two approaches were evaluated, a mean value approach and a cycle dependent approach. Furthermore, a Coffin-Manson type of expression (derived from the results of a set of 12 smooth specimens) is used to predict the number of cycles to fatigue crack initiation. The numerical procedure is applied to a series of experiments, in which notched single-crystal components were exposed to uniaxial cyclic loading in the nominal [001] crystal direction at 500 degrees C with R(epsilon) = 0. A good correlation between the experimental results and the simulated results was found.

  • 16.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Fatigue crack initiation in a notched single-crystal superalloy component2010In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 2, no 1, p. 1067-1075Article in journal (Refereed)
    Abstract [en]

    In this paper, the fatigue crack initiation in notched single-crystal test specimens of material MD2 is investigated and analysed. A critical plane approach is adopted, in which the total strain ranges on the discrete slip planes are evaluated. Furthermore, a Coffin-Manson type of expression is used to describe the number of cycles to fatigue crack initiation. This relation is determined from a set of smooth test specimens loaded uniaxially in the [001], [011] and directions at 500 °C with Rε=−1. The numerical procedure is then applied to a series of experiments, in which notched single-crystal test specimens were exposed to uniaxial cyclic loading in the [001] direction at 500 °C with Rε=0.

  • 17.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Segersäll, Mikael
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Modelling of Thermomechanical Fatigue Stress Relaxation in a Single-Crystal Nickel-Base Superalloy2014In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 90, p. 61-70Article in journal (Refereed)
    Abstract [en]

    The thermomechanical fatigue (TMF) stress relaxation of the single-crystal nickel-base superalloy MD2 has been analysed and modelled in this paper. In-phase and out-of-phase TMF experiments in the nominal [001],[011] and [111] crystal orientations have been performed. The TMF cycle consists of two loadings each with a 100 h long hold-time. A simple crystallographic creep model, based on Norton’s creep law, has been developed and used in conjunction with a crystal plasticity model. The model takes anisotropy and tension/compression asymmetry into account, where the anisotropic behaviour is based on the crystallographic stress state. The values of the creep parameters in the anisotropic expression were determined by inverse modelling of the conducted TMF experiments, a parameter optimisation were performed. The developed model predicts the stress relaxation seen in the TMF experiments with good correlation.

  • 18.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Segersäll, Mikael
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Modelling of TMF Crack Initiation in Smooth Single-Crystal Superalloy Specimens2014Conference paper (Refereed)
    Abstract [en]

    In this paper the TMF crack initiation behaviour of the single-crystal nickel-base superalloyMD2 is investigated and modelled. TMF tests were performed in both IP and OP for varying mechanicalstrain ranges in the [001] crystallographic direction until TMF crack initiation was obtained. Acrystal plasticity-creep model was used in conjunction with a critical-plane approach, to evaluate thenumber of cycles to TMF crack initiation. The critical-plane model was evaluated and calibrated ata stable TMF cycle, where the effect of the stress relaxation had attenuated. This calibrated criticalplanemodel is able to describe the TMF crack initiation, taking tension/compression asymmetry aswell as stress relaxation anisotropy into account, with good correlation to the real fatigue behaviour.

  • 19.
    Norman, Viktor
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Skoglund, Peter
    Scania CV AB, Materials Technology, Södertälje.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Damage Mechanisms in Silicon-Molybdenum Cast Irons Subjected to Thermo-mechanical Fatigue2017In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 99, no 2, p. 258-265Article in journal (Refereed)
    Abstract [en]

    The damage mechanisms active in silicon-molybdenum cast irons, namely EN-GJS-SiMo5-1 and SiMo1000, under thermo-mechanical fatigue and combined thermo-mechanical and high-cycle fatigue conditions have been investigated. The studied load conditions are those experienced at critical locations in exhaust manifolds of heavy-vehicle diesel engines, namely a temperature cycle of 300–750 °C with varied total mechanical and high-cycle fatigue strain ranges. It is established that oxide intrusions are formed in the early life from which macroscopic fatigue cracks are initiated close to the end-of-life. However, when high-cycle fatigue loading is superimposed, small cracks are preferentially initiated at graphite nodules within the bulk. In addition, it is found that both the oxidation growth rate and casting defects located near the surface affect the intrusion growth.

  • 20.
    Norman, Viktor
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Skoglund, Peter
    Scania CV AB, Materials Technology, Södertälje, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    The effect of superimposed high-cycle fatigue on thermo-mechanical fatigue in cast iron2016In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 88, p. 121-131Article in journal (Refereed)
    Abstract [en]

    The eect of superimposing a high-cycle fatigue strain load on an out-ofphase thermo-mechanical fatigue test of a lamellar, compacted and spheroidal graphite iron, has been investigated. In particular, dierent total mechanical strain ranges, maximum temperatures and high-cycle fatigue strain ranges have been studied. From this, a new property has been identied, measured and compared, namely the thermo-mechanical and high-cycle fatigue threshold, dened as the high-cycle fatigue strain range at which the life is reduced to half. Using a model developed earlier, the lifetimes and the threshold have been successfully estimated for the lamellar and compacted graphite iron, however underestimated for the spheroidal graphite iron. Nevertheless, an expression of the threshold was deduced from the model, which possibly can estimate its value in other cast irons and its high-cycle fatigue frequency dependence.

  • 21.
    Norman, Viktor
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Skoglund, Peter
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Scania CV AB, Materials Technology, Södertälje, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Thermo-mechanical and superimposed high-cycle fatigue interactions in compacted graphite iron2015In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 80, p. 381-390Article in journal (Refereed)
    Abstract [en]

    The effect of adding a superimposed high-frequent strain load, denoted as a high-cycle fatigue strain component, upon a strain-controlled thermo-mechanical fatigue test has been studied on a compacted graphite iron EN-GJV-400 for different thermo-mechanical fatigue cycles and high-cycle fatigue strain ranges. It is demonstrated that the successive application of an high-cycle fatigue load has a consistent effect on the fatigue life, namely the existence of a constant high-cycle fatigue strain range threshold below which the fatigue life is unaffected but severely reduced when above. This effect on the fatigue life is predicted assuming that microstructurally small cracks are propagated and accelerated according to a Paris law incorporating an experimentally estimated crack opening level.

  • 22.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy2015In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 623, no 19, p. 68-77Article in journal (Refereed)
    Abstract [en]

    In this study, the influuence from crystal orientation on the thermomehanical fatigue (TMF) behaviour of the recently developed single-rystal superalloy STAL-15 is considered, both from an experimental and a nite element (FE) perspective. Experimental results show that there is a strong inuence from the elastic stiffness, with respect to the loading direction, on the TMF life. However, the results also indicate that the number of active slip planes duringdeformation inuence the TMF life, where specimens with a higher number of active slip planes are favoured compared to specimens with fewer active slip planes. The higher number of active slip planes results in a more widespread deformation compared to a more conentrated deformation when only one slip plane is active. Deformation bands with smeared and elongated  γ-precipitates together with deformation twinning were found to be major deformation mechanisms, where the twins primarily were observed in specimens with several active slip planes. From an FE-perspective, therystal orientation with respect to the loading direction is quantied and adopted into a framework which makes it possible to describe the internal crystallographic arrangement and its entities in a material model. Further, a material model which incorporates the crystalorientation is able to predict the number of slip planes observed from microstructural observations, as well as the elasticstiness of the material with respect to the loading direction.

  • 23.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan J.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Creep and Stress Relaxation Anisotropy of a Single-Crystal Superalloy2014In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 45, no 5, p. 2532-2544Article in journal (Refereed)
    Abstract [en]

    In this study, the TMF stress relaxation and creep behavior at 1023 K and 1223 K (750 °C and 950 °C) have been investigated for a Ni-based single-crystal superalloy. Specimens with three different crystal orientations along their axes were tested; 〈001〉, 〈011〉, and 〈111〉, respectively. A highly anisotropic behavior during TMF stress relaxation was found where the 〈111〉 direction significantly shows the worst properties of all directions. The TMF stress relaxation tests were performed in both tension and compression and the results indicate a clear tension/compression asymmetry for all directions where the greatest asymmetry was observed for the 〈001〉 direction at 1023 K (750 °C); here the creep rate was ten times higher in compression than tension. This study also shows that TMF cycling seems to influence the creep rate during stress relaxation temporarily, but after some time it decreases again and adapts to the pre-unloading creep rate. Creep rates from the TMF stress relaxation tests are also compared to conventional constant load creep rates and a good agreement is found.

  • 24.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Siemens Industrial Turbomachinery AB, Finspång, Sweden .
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    In- and Out-of Phase Thermomechanical Fatigue of a Ni-Based Single-Crystal Superalloy2014In: 2014 EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications / [ed] J. Y. Guédou and J. Choné, EDP Sciences, 2014, Vol. 14, p. Article no. 19003-Conference paper (Refereed)
    Abstract [en]

    In this study, the difference between in-phase (IP) and out-of-phase (OP) thermomechanical fatigue (TMF) cycling from 100 to 750 °C has been investigated for the Ni-based single-crystal superalloy MD2. In addition, two different crystal orientations were studied, the ⟨001⟩ and ⟨011⟩ orientations respectively. When comparing IP and OP TMF lives, a strain range dependency is found for the ⟨001⟩ direction. For high strain ranges, IP cycling leads to a higher number of cycles to failure compared to OP. However at lower strain ranges, OP cycling leads to a higher number of cycles to failure compared to IP. Microstructure investigation shows that for the ⟨001⟩ direction, deformation twinning within the γ/γ′-microstructure is much more pronounced during OP conditions compared to IP. However for the ⟨011⟩ direction, the opposite is observed; twinning is more pronounced during IP TMF. From the microstructure investigation it is also visible that intersections between twins seems to trigger formation of TCP phases and recrystallization. These intersections also work as initiation points for TMF damage.

  • 25.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Solid Mechanics.
    High Temperature Stress Relaxation of a Ni-based Single-Crystal Superalloy2013Conference paper (Refereed)
  • 26.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Low-Cycle Fatigue Behaviour of a Ni-Based Single-Crystal Superalloy2014In: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 891-892, p. 416-421Article in journal (Refereed)
    Abstract [en]

    In this study, low-cycle fatigue (LCF) tests at 500 degrees C in the < 001 >, < 011 > and < 111 > directions have been performed for the Ni-based single-crystal superalloy MD2. All tests were carried out in strain control with R-is an element of = -1. The < 001 > direction has the lowest stiffness of the three directions and also shows the best fatigue properties in this study followed by the < 011 > and < 111 > directions, respectively. It is well recognised that Ni-based single-crystal superalloys show a tension/compression asymmetry in yield strength and this study shows that a tension/compression asymmetry is also present during LCF conditions. At mid-life, the < 001 > direction generally has a higher stress in tension than in compression, while the opposite is true for the < 011 > direction. For the < 111 > direction the asymmetry is found to be strain range dependent. The < 011 > and < 111 > directions show a cyclic hardening behaviour when comparing cyclic stress-strain curves with monotonic stress-strain curves. In addition, the < 011 > and < 111 > directions show a serrated yielding behaviour for a number of cycles while the yielding of the < 001 > direction is more stable.

1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf