Approximation spaces defined by multiparametric approximation families with possible nonlinear projectors are considered. It is shown that a real interpolation space for a tuple of such spaces is again an approximation space of the same type.
In inverse problems we often need to solve numerically unstable problems that are very sensitive to noise. One of the approaches to such type of problems is classical regularization theory for Hilbert spaces. In the talk I plan to show connections between this theory and the theory of real interpolation, give di®erent examples and discuss a non - Hilbert case - the couple (L^{2};BV ).
Let (Y0,Y1) be a Banach couple and let Xj be a closed complemented subspace of Yj, (j = 0,1). We present several results for the general problem of finding necessary and sufficient conditions on the parameters (θ, q) such that the real interpolation space (X0,X1)θ,q is a closed subspace of (Y0,Y1)θ,q. In particular, we establish conditions which are necessary and sufficient for the equality (X0,X1)θ,q = (Y0,Y1)θ,q, with the proof based on a previous result by Asekritova and Kruglyak on invertibility of operators. We also generalize the theorem by Ivanov and Kalton where this problem was solved under several rather restrictive conditions, such as that X1 = Y1 and X0 is a subspace of codimension one in Y0.
In the nondiagonal case, interpolation spaces for a collection of Besov spaces are described. The results are consequences of the fact that, whenever the convex hull of points includes a ball of , we have where
and
.
Let be a linear bounded operator from a couple to a couple such that the restrictions of on the spaces and have bounded inverses. This condition does not imply that the restriction of on the real interpolation space has a bounded inverse for all values of the parameters and . In this paper under some conditions on the kernel of we describe all spaces such that the operator has a bounded inverse.
Let A be a bounded linear operator from a couple (X-0, X-1) to a couple (Y-0, Y-1) such that the restrictions of A on the end spaces X-0 and X-1 have bounded inverses defined on Y-0 and Y-1, respectively. We are interested in the problem of how to determine if the restriction of A on the space (X-0, XI)(theta,q) has a bounded inverse defined on the space (Y-0, Y-1)(theta,q). In this paper, we show that a solution to this problem can be given in terms of indices of two subspaces of the kernel of the operator A on the space X-0 + X-1.
It is shown that the main results of the theory of real interpolation, i.e. the equivalence and reiteration theorems, can be extended from couples to a class of (n+1)-tuples of Banach spaces, which includes (n+1)-tuples of Banach function lattices, Sobolev and Besov spaces. As an application of our results, it is shown that Lions' problem on interpolation of subspaces and Semenov's problem on interpolation of subcouples have positive solutions when all spaces are Banach function lattices or their retracts. In general, these problems have negative solutions.
It is shown that the formula
where and is correct under the restrictions and It is also true if we suppose that and the spaces are functional Banach or quasi-Banach lattices on the same measure space
Let Omega be a rectangle in R-2. A new algorithm for the construction of a near-minimizer for the couple (L-2 (Omega); BV(Omega)) is presented. The algorithm is based on the Besicovitch covering theorem and analysis of local approximations of the given function f is an element of L-2 (Omega).
Let Ω be a rectangle in R^{2}. A new algorithm for the construction of a near-minimizer for the couple (L^{2}(Ω), BV(Ω)) is presented. The algorithm is based on the Besicovitch covering theorem and analysis of local approximations of the given function f ∈ L^{2}(Ω).
There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous methods allow us to obtain K-functional formulas in terms of the maximal function for couples of weighted $L_p$-spaces.
A complete description of the real interpolation space L=(Lp0(ω0),…,Lpn(ωn))θ⃗ ,q is given. An interesting feature of the result is that the whole measure space (Ω,μ) can be divided into disjoint pieces Ωi (i∈I) such that L is an lq sum of the restrictions of L to Ωi, and L on each Ωi is a result of interpolation of just two weighted Lp spaces. The proof is based on a generalization of some recent results of the first two authors concerning real interpolation of vector-valued spaces.
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted Lp-spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability in the frame of Besov spaces based on Lorentz spaces. Moreover, by using the results and ideas of this paper, we can extend the Stein–Weiss interpolation theorem known for Lp(μ)-spaces with change of measures to Lorentz spaces with change of measures. In particular, the results obtained show that for some problems in analysis the three-space real interpolation approach is really more useful than the usual real interpolation between couples.
Wave analysis is efficient for investigating the interior of objects. Examples are ultra sound examination of humans and radar using elastic and electromagnetic waves. A common procedure is inverse scattering where both transmitters and receivers are located outside the object or on its boundary. A variant is when both transmitters and receivers are located on the scattering object. The canonical model is a finite inhomogeneous string driven by a harmonic point force. The inverse problem for the determination of the diffractive index of the string is studied. This study is a first step to the problem for the determination of the mechanical strength of wooden logs. An inverse scattering theory is formulated incorporating two regularizing strategies. The results of simulations using this theory show that the suggested method works quite well and that the regularization methods based on the couple of spaces (L2; H1 ) could be very useful in such problems.