liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aghaee Ghaleshahi, Nima
    Linköping University, Department of Computer and Information Science. Linköping University, Faculty of Science & Engineering.
    Thermal Issues in Testing of Advanced Systems on Chip2015Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis.

    Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors.

    Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced.

    The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced.

    All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.

  • 2.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    He, Zhiyuan
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Eles, Petru Ion
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Temperature-Aware SoC Test Scheduling Considering Inter-Chip Process Variation2010In: 19th IEEE Asian Test Symposium (ATS10), Shanghai, China, December 1-4, 2010., 2010Conference paper (Refereed)
    Abstract [en]

    Systems on Chip implemented with deep submicron technologies suffer from two undesirable effects, high power density, thus high temperature, and high process variation, which must be addressed in the test process. This paper presents two temperature-aware scheduling approaches to maximize the test throughput in the presence of inter-chip process variation. The first approach, an off-line technique, improves the test throughput by extending the traditional scheduling method. The second approach, a hybrid one, improves further the test throughput with a chip classification scheme at test time based on the reading of a temperature sensor. Experimental results have demonstrated the efficiency of the proposed methods.

  • 3.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, Software and Systems.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Adaptive Temperature-Aware SoC Test Scheduling Considering Process Variation2011In: Digital System Design (DSD), 2011 14th Euromicro Conference on, IEEE, 2011, p. 197-204Conference paper (Refereed)
    Abstract [en]

    High temperature and process variation areundesirable effects for modern systems-on-chip. The hightemperature is a prominent issue during test and should be takencare of during the test process. Modern SoCs, affected by largeprocess variation, experience rapid and large temperaturedeviations and, therefore, a traditional static test schedule which isunaware of these deviations will be suboptimal in terms of speedand/or thermal-safety. This paper presents an adaptive testscheduling method which addresses the temperature deviationsand acts accordingly in order to improve the test speed andthermal-safety. The proposed method is divided into acomputationally intense offline-phase, and a very simple online-phase.In the offline-phase a schedule tree is constructed, and inthe online-phase the appropriate path in the schedule tree istraversed, step by step and based on temperature sensor readings.Experiments have demonstrated the efficiency of the proposedmethod.

  • 4.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    An Efficient Temperature-Gradient Based Burn-In Technique for 3D Stacked ICs2014In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014, IEEE conference proceedings, 2014Conference paper (Refereed)
    Abstract [en]

    Burn-in is usually carried out with high temperature and elevated voltage. Since some of the early-life failures depend not only on high temperature but also on temperature gradients, simply raising up the temperature of an IC is not sufficient to detect them. This is especially true for 3D stacked ICs, since they have usually very large temperature gradients. The efficient detection of these early-life failures requires that specific temperature gradients are enforced as a part of the burn-in process. This paper presents an efficient method to do so by applying high power stimuli to the cores of the IC under burn-in through the test access mechanism. Therefore, no external heating equipment is required. The scheduling of the heating and cooling intervals to achieve the required temperature gradients is based on thermal simulations and is guided by functions derived from a set of thermal equations. Experimental results demonstrate the efficiency of the proposed method.

  • 5.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    An Integrated Temperature-Cycling Acceleration and Test Technique for 3D Stacked ICs2015In: 20th Asia and South Pacific Design Automation Conference (ASP-DAC 2015), Chiba/Tokyo, Japan, Jan. 19-22, 2015., Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 526-531Conference paper (Refereed)
    Abstract [en]

    In a modern 3D IC, electrical connections between vertically stacked dies are made using through silicon vias. Through silicon vias are subject to undesirable early-life effects such as protrusion as well as void formation and growth. These effects result in opens, resistive opens, and stress induced carrier mobility reduction, and consequently circuit failures. Operating the ICs under extreme temperature cycling can effectively accelerate such early-life failures and make them detectable at the manufacturing test process. An integrated temperature-cycling acceleration and test technique is introduced in this paper that integrates a temperature-cycling acceleration procedure with pre-, mid-, and post-bond tests for 3D ICs. Moreover, it reduces the need for costly temperature chamber based temperature-cycling acceleration procedures. All these result in a reduction in the overall test costs. The proposed method is a schedule-based solution that creates the required temperature cycling effect along with performing the tests. Experimental results demonstrate its efficiency.

  • 6.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Efficient Test Application for Rapid Multi-Temperature Testing2015In: Proceedings of the 25th edition on Great Lakes Symposium on VLSI, Association for Computing Machinery (ACM), 2015, p. 3-8Conference paper (Other academic)
    Abstract [en]

    Different defects may manifest themselves at different temperatures. Therefore, the tests that target such temperature-dependent defects must be applied at different temperatures appropriate for detecting them. Such multi-temperature testing scheme applies tests at different required temperatures. It is known that a test's power dissipation depends on the previously applied test. Therefore, the same set of tests when organized differently dissipates different amounts of power. The technique proposed in this paper organizes the tests efficiently so that the resulted power levels lead to the required temperatures. Consequently a rapid multi-temperature testing is achieved. Experimental studies demonstrate the efficiency of the proposed technique.

  • 7.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Heuristics for Adaptive Temperature-Aware SoC Test Scheduling Considering Process Variation2011In: The 11th Swedish System-on-Chip Conference, Varberg, Sweden, May 2-3, 2011, 2011Conference paper (Other academic)
    Abstract [en]

    High working temperature and process variation are undesirable effects for modern systems-on-chip. The high temperature should be taken care of during the test. On the other hand, large process variations induce rapid and large temperature deviations causing the traditional static test schedules to be suboptimal in terms of speed and/or thermal-safety. A remedy to this problem is an adaptive test schedule which addresses the temperature deviations by reacting to them. Our adaptive method is divided into a computationally intense offline-phase, and a very simple online-phase. In this paper, heuristics are proposed for the offline phase in which the optimized schedule tree is found. In the online-phase, based on the temperature sensor readings the appropriate path in the schedule tree is traversed. Experiments are made to tune the proposed heuristics and to demonstrate their efficiency.

  • 8.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Process-variation and Temperature Aware SoC Test Scheduling Technique2013In: Journal of electronic testing, ISSN 0923-8174, E-ISSN 1573-0727, Vol. 29, no 4, p. 499-520Article in journal (Refereed)
    Abstract [en]

    High temperature and process variation are undesirable phenomena affecting modern Systems-on-Chip (SoC). High temperature is a well-known issue, in particular during test, and should be taken care of in the test process. Modern SoCs are affected by large process variation and therefore experience large and time-variant temperature deviations. A traditional test schedule which ignores these deviations will be suboptimal in terms of speed or thermal-safety. This paper presents an adaptive test scheduling method which acts in response to the temperature deviations in order to improve the test speed and thermal safety. The method consists of an offline phase and an online phase. In the offline phase a schedule tree is constructed and in the online phase the appropriate path in the schedule tree is traversed based on temperature sensor readings. The proposed technique is designed to keep the online phase very simple by shifting the complexity into the offline phase. In order to efficiently produce high-quality schedules, an optimization heuristic which utilizes a dedicated thermal simulation is developed. Experiments are performed on a number of SoCs including the ITC'02 benchmarks and the experimental results demonstrate that the proposed technique significantly improves the cost of the test in comparison with the best existing test scheduling method.

  • 9.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Process-Variation and Temperature Aware SoC Test Scheduling Using Particle Swarm Optimization2011In: The 6th IEEE International Design and Test Workshop (IDT'11), Beirut, Lebanon, December 11–14, 2011., IEEE , 2011Conference paper (Refereed)
    Abstract [en]

    High working temperature and process variation are undesirable effects for modern systems-on-chip. It is well recognized that the high temperature should be taken care of during the test process. Since large process variations induce rapid and large temperature deviations, traditional static test schedules are suboptimal in terms of speed and/or thermalsafety. A solution to this problem is to use an adaptive test schedule which addresses the temperature deviations by reacting to them. We propose an adaptive method that consists of a computationally intense offline-phase and a very simple onlinephase. In the offline-phase, a near optimal schedule tree is constructed and in the online-phase, based on the temperature sensor readings, an appropriate path in the schedule tree is traversed. In this paper, particle swarm optimization is introduced into the offline-phase and the implications are studied. Experimental results demonstrate the advantage of the proposed method.

  • 10.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Process-Variation Aware Multi-temperature Test Scheduling2014In: 27th International Conference on VLSI Design and 13th International Conference on Embedded Systems, IEEE conference proceedings, 2014, p. 32-37Conference paper (Refereed)
    Abstract [en]

    Chips manufactured with deep sub micron technologies are prone to large process variation and temperature-dependent defects. In order to provide high test efficiency, the tests for temperature-dependent defects should be applied at appropriate temperature ranges. Existing static scheduling techniques achieve these specified temperatures by scheduling the tests, specially developed heating sequences, and cooling intervals together. Because of the temperature uncertainty induced by process variation, a static test schedule is not capable of applying the tests at intended temperatures in an efficient manner. As a result the test cost will be very high. In this paper, an adaptive test scheduling method is introduced that utilizes on-chip temperature sensors in order to adapt the test schedule to the actual temperatures. The proposed method generates a low cost schedule tree based on the variation statistics and thermal simulations in the design phase. During the test, a chip selects an appropriate schedule dynamically based on temperature sensor readings. A 23% decrease in the likelihood that tests are not applied at the intended temperatures is observed in the experimental studies in addition to 20% reduction in test application time.

  • 11.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Temperature-Gradient Based Burn-In for 3D Stacked ICs2013In: The 12th Swedish System-on-Chip Conference (SSoCC 2013), Ystad, Sweden, May 6-7, 2013 (not reviewed, not printed)., 2013Conference paper (Other academic)
    Abstract [en]

    3D Stacked IC fabrication, using Through-Silicon-Vias, is a promising technology for future integrated circuits. However, large temperature gradients may exacerbate early-life-failures to the extent that the commercialization of 3D Stacked ICs is challenged. The effective detection of these early-life-failures requires that burn-in is performed when the IC’s temperatures comply with the thermal maps that properly specify the temperature gradients. In this paper, two methods that efficiently generate and maintain the specified thermal maps are proposed. The thermal maps are achieved by applying heating and cooling intervals to the chips under test through test access mechanisms. Therefore, no external heating system is required. The scheduling of the heating and cooling intervals is based on thermal simulations. The schedule generation is guided by functions that are derived from the temperature equations. Experimental results demonstrate the efficiency of the proposed method.

  • 12.
    Aghaee Ghaleshahi, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Temperature-Gradient Based Test Scheduling for 3D Stacked ICs2013In: 2013 IEEE International Conference on Electronics, Circuits, and Systems, IEEE conference proceedings, 2013, p. 405-408Conference paper (Refereed)
    Abstract [en]

    Defects that are dependent on temperature-gradients (e.g., delay-faults) introduce a challenge for achieving an effective test process, in particular for 3D ICs. Testing for such defects must be performed when the proper temperature gradients are enforced on the IC, otherwise these defects may escape the test. In this paper, a technique that efficiently heats up the IC during test so that it complies with the specified temperature gradients is proposed. The specified temperature gradients are achieved by applying heating sequences to the cores of the IC under test trough test access mechanism; thus no external heating mechanism is required. The scheduling of the test and heating sequences is based on thermal simulations. The schedule generation is guided by functions derived from the IC's temperature equation. Experimental results demonstrate that the proposed technique offers considerable test time savings.

  • 13.
    Aghaee, Nima
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Faculty of Science & Engineering.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Faculty of Science & Engineering.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Faculty of Science & Engineering.
    A Test-Ordering Based Temperature-Cycling Acceleration Technique for 3D Stacked ICs2015In: Journal of electronic testing, ISSN 0923-8174, E-ISSN 1573-0727, ISSN 0923-8174, Vol. 31, no 5, p. 503-523Article in journal (Refereed)
    Abstract [en]

    n a modern three-dimensional integrated circuit (3D IC), vertically stacked dies are interconnected using through silicon vias. 3D ICs are subject to undesirable temperature-cycling phenomena such as through silicon via protrusion as well as void formation and growth. These cycling effects that occur during early life result in opens, resistive opens, and stress induced carrier mobility reduction. Consequently these early-life failures lead to products that fail shortly after the start of their use. Artificially-accelerated temperature cycling, before the manufacturing test, helps to detect such early-life failures that are otherwise undetectable. A test-ordering based temperature-cycling acceleration technique is introduced in this paper that integrates a temperature-cycling acceleration procedure with pre-, mid-, and post-bond tests for 3D ICs. Moreover, it reduces the need for costly temperature chamber based temperature-cycling acceleration methods. All these result in a reduction in the overall test costs. The proposed method is a test-ordering and schedule based solution that enforces the required temperature cycling effect and simultaneously performs the tests whenever appropriate. Experimental results demonstrate the efficiency of the proposed technique.

  • 14.
    Aghaee, Nima
    et al.
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering.
    Temperature-Gradient-Based Burn-In and Test Scheduling for 3-D Stacked ICs2015In: IEEE Transactions on Very Large Scale Integration (vlsi) Systems, ISSN 1063-8210, E-ISSN 1557-9999, Vol. 23, no 12, p. 2992-3005Article in journal (Refereed)
    Abstract [en]

    Large temperature gradients exacerbate various types of defects including early-life failures and delay faults. Efficient detection of these defects requires that burn-in and test for delay faults, respectively, are performed when temperature gradients with proper magnitudes are enforced on an Integrated Circuit (IC). This issue is much more important for 3-D stacked ICs (3-D SICs) compared with 2-D ICs because of the larger temperature gradients in 3-D SICs. In this paper, two methods to efficiently enforce the specified temperature gradients on the IC, for burn-in and delay-fault test, are proposed. The specified temperature gradients are enforced by applying high-power stimuli to the cores of the IC under test through the test access mechanism. Therefore, no external heating mechanism is required. The tests, high power stimuli, and cooling intervals are scheduled together based on temperature simulations so that the desired temperature gradients are rapidly enforced. The schedule generation is guided by functions derived from a set of thermal equations. The experimental results demonstrate the efficiency of the proposed methods.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf