liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björn, Niclas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Vergote, Ignace
    Leuven Canc Inst, Belgium.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    ABCB1 Variation Affects Myelosuppression, Progression-free Survival and Overall Survival in Paclitaxel/Carboplatin-treated Ovarian Cancer Patients2018In: Basic & Clinical Pharmacology & Toxicology, ISSN 1742-7835, E-ISSN 1742-7843, Vol. 123, no 3, p. 277-287Article in journal (Refereed)
    Abstract [en]

    The standard chemotherapy for ovarian cancer is paclitaxel/carboplatin. Patients often exhibit myelosuppressive toxicity, and the treatment response varies considerably. In this study, we investigated the previously reported SNPs 1199Gamp;gt;A (rs2229109), 1236Camp;gt;T (rs1128503), 2677Gamp;gt;T/A (rs2032582), 3435Camp;gt;T (rs1045642) in ABCB1, and 1196Aamp;gt;G (rs10509681) in CYP2C8 and their association with treatment-induced myelosuppression, progression-free survival (PFS) and overall survival (OS). From the phase III study, OAS-07OVA, 525 patients (All) treated with carboplatin and paclitaxel administered as Paclical (Arm A, n=260) or Taxol((R)) (Arm B, n=265) were included and genotyped using pyrosequencing. Genotype associations with myelosuppression, PFS and OS were investigated using anova, Kaplan-Meier analysis and Cox proportional hazard models. The most prominent finding was for the ABCB1 variant 3435TT, which was significantly associated with increased PFS in All (hazard ratio (HR) = 0.623), in Arm A (HR=0.590) and in Arm B (HR=0.627), as well as increased OS in All (HR=0.443) and in Arm A (HR=0.372) compared to the wild-type, 3435CC. For toxicity, the most interesting finding concerned the haplotype, including 1236TT, 2677TT and 3435TT, which was associated with higher neutrophil values in Arm B (p=0.039) and less neutrophil decrease in All (p=0.048) and in Arm B (p=0.021). It is noteworthy that the results varied depending on the treatment arm which indicates that the effects of ABCB1 variants vary with the treatment regimen. Our results reflect the contradictory results of previous studies, confirming that small variations in the composition of treatment regimens and patient populations may influence the interpretation of SNPs effects on treatment outcome.

  • 2.
    Boiso, Samuel
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Zackrisson, Anna Lena
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Karlsson, Louise
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Carlsson, Björn
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Tillmar, Andreas
    Natl Board Forens Med, Dept Forens Genet and Forens Toxicol, Linkoping, Sweden .
    Kugelberg, Fredrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Ahlner, Johan
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Hägg, Staffan
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    ABCB1 gene polymorphisms are associated with suicide in forensic autopsies2013In: Pharmacogenetics & Genomics, ISSN 1744-6872, E-ISSN 1744-6880, Vol. 23, no 9, p. 463-469Article in journal (Refereed)
    Abstract [en]

    Background Polymorphisms in ABCB1 have the ability to affect both the function and the expression of the transporter protein P-glycoprotein and may lead to an altered response for many drugs including some antidepressants and antipsychotics.Objective The aim of this study was to examine the impact of the ABCB1 polymorphisms 1199Gandgt;A, 1236Candgt;T, 2677Gandgt;T/A, and 3435Candgt;T in deaths by suicide.Patients and methods A total of 998 consecutive Swedish forensic autopsies performed in 2008 in individuals 18 years of age or older, where femoral blood was available and a toxicological screening had been performed, were investigated. Genotypes were assessed with pyrosequencing and information on the cause and manner of each death was obtained from the forensic pathology and toxicology databases.Results There was a significantly higher frequency of the T allele at positions 1236, 2677, and 3435 among the suicide cases compared with the nonsuicide cases.Conclusion Our result from forensic cases suggests that ABCB1 polymorphisms are associated with an increased risk for completed suicides. The biological mechanisms involved and the clinical implications for these findings are largely unknown and need to be examined further.

  • 3.
    Coulthard, Sally A
    et al.
    Newcastle University.
    Redfern, Christopher P F
    Linköping University, Department of Medical and Health Sciences, Pharmacology. Linköping University, Faculty of Health Sciences.
    Lindqvist Appell, Malin
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Skoglund, Karin
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Hall, Andrew G
    Newcastle University.
    Taylor, Gordon A
    Newcastle University.
    Hogarth, Linda A
    Newcastle University.
    Increased Sensitivity to Thiopurines in Methylthioadenosine Phosphorylase-Deleted Cancers2011In: MOLECULAR CANCER THERAPEUTICS, ISSN 1535-7163, Vol. 10, no 3, p. 495-504Article in journal (Refereed)
    Abstract [en]

    The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), are used in the treatment of leukemia. Incorporation of deoxythioguanosine nucleotides (dG(s)) into the DNA of thiopurine-treated cells causes cell death, but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Because the growth of MTAP-deleted tumor cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP(-)) transfected to express MTAP constitutively (A549-MTAP(+)). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intracellularly to MeTIMP, was markedly higher in both cell lines under MTAP(-) conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dG(s) incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP.

  • 4.
    Coulthard, Sally
    et al.
    Newcastle University, UK.
    Redfern, Christopher
    Newcastle University, UK.
    Vikingsson, Svante
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Lindqvist Appell, Malin
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Skoglund, Karin
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Hall, Andrew
    Newcastle University, UK.
    Taylor, Gordon
    Newcastle University, UK.
    Hogarth, Linda
    Newcastle University, UK.
    Increased sensitivity to thiopurines in methylthioadenosine phosphorylase-deleted cancers in PURINERGIC SIGNALLING, vol 6, issue , pp 33-332010In: PURINERGIC SIGNALLING, Springer Science Business Media , 2010, Vol. 6, p. 33-33Conference paper (Refereed)
    Abstract [en]

    The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are used in the treatment of leukaemia. Incorporation of deoxythioguanosine nucleotides (dGs) into the DNA of thiopurine-treated cells causes cell death but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Since the growth of MTAP-deleted tumour cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukaemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP-ve) transfected to express MTAP constitutively (A549-MTAP+ve). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intra-cellularly to MeTIMP, was markedly higher in both cell lines under MTAP-ve conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dGs incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP.

  • 5.
    Green, Henrik
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Paul, E
    Karolinska University Hospital.
    Hermansson, M
    Uppsala University.
    Rosenquist, R
    Uppsala University.
    Paul, C
    Karolinska University Hospital.
    Nahi, H
    Karolinska University Hospital.
    Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype2012In: The Pharmacogenomics Journal, ISSN 1470-269X, E-ISSN 1473-1150, Vol. 12, no 2, p. 111-118Article in journal (Refereed)
    Abstract [en]

    Overexpression of the multi-drug transporter P-glycoprotein, encoded by the ABCB1 gene, is a clinically relevant problem in acute myeloid leukemia (AML). Polymorphisms in ABCB1 might contribute to cancer risk and therapeutic response. We therefore investigated the influence of polymorphisms G1199A, C1236T, G2677T/A and C3435T on cancer susceptibility, in vitro cytotoxicity and overall survival in 100 de novo AML patients with normal karyotype. Patients with 1236C/C or 2677G/G genotypes showed poorer survival than patients with other genotypes (P = 0.03 and P = 0.02, respectively). Both these genotypes were significant factors for survival in multivariate analysis, along with age, NPM1 and FLT3 mutation status. In vitro cytotoxicity studies demonstrated that leukemic cells from 1236T/T and 2677T/T patients were significantly more susceptible to mitoxantrone (P 0.02), and tended to be more susceptible to etoposide and daunorubicin (P = 0.07-0.09), but not to cytarabine. No significant difference in allele frequencies was found between patients and healthy volunteers (n = 400).

  • 6.
    Green, Henrik
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Suleman Khan, Muhammad
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Åvall-Lundqvist, Elisabeth
    Karolinska University of Hospital.
    Peterson, Curt
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Impact of CYP3A5(*)3 and CYP2C8-HapC on Paclitaxel/Carboplatin-Induced Myelosuppression in Patients with Ovarian Cancer2011In: Journal of Pharmaceutical Sciences, ISSN 0022-3549, E-ISSN 1520-6017, Vol. 100, no 10, p. 4205-4209Article in journal (Refereed)
    Abstract [en]

    The influence of genetic variants on paclitaxel-induced toxicity is of considerable interest for reducing adverse drug reactions. Recently, the genetic variants CYP2C8(*)3, CYP2C8-HapC, and CYP3A5(*)3 were associated with paclitaxel-induced neurotoxicity. We, therefore, investigated the impact of CYP2C8-HapC and CYP3A5(*)3 on paclitaxel/carboplatin-induced myelosuppression and neurotoxicity. Thirty-three patients from a prospective pharmacokinetics study were genotyped using pyrosequencing. Patients with variant alleles of CYP2C8-HapC were found to have significantly lower nadir values of both leukocytes and neutrophils (p andlt; 0.05) than patients with the wild-type genotype. CYP3A5(*)3/(*)1 patients were shown to have borderline, significantly lower nadir values of leukocytes (p = 0.07) than (*)3/(*)3 patients. Combining the two genotypes resulted in a significant correlation with both leukopenia and neutropenia (p = 0.01). No effect of these genetic variants on neurotoxicity could be shown in this rather small study, but their importance for paclitaxel-induced toxicity could be confirmed.

  • 7.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Fyrberg, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Paul, Esbjorn
    Karolinska Institute, Sweden.
    Nahi, Hareth
    Karolinska Institute, Sweden.
    Hermanson, Monica
    Uppsala University, Sweden.
    Rosenquist, Richard
    Uppsala University, Sweden.
    Hoglund, Martin
    Uppsala University, Sweden.
    Palmqvist, Lars
    University of Gothenburg, Sweden.
    Stockelberg, Dick
    Sahlgrens University Hospital, Sweden.
    Wei, Yuan
    Sahlgrens University Hospital, Sweden.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. KTH Royal Institute Technology, Sweden.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype2014In: British Journal of Haematology, ISSN 0007-1048, E-ISSN 1365-2141, Vol. 167, no 5, p. 671-680Article in journal (Refereed)
    Abstract [en]

    Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199Ggreater thanA, 1236Cgreater thanT, 2677Ggreater thanT/A and 3435Cgreater thanT, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0.017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0.039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236Cgreater thanT and 2677Ggreater thanT may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.

  • 8.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Fyrberg, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Paul, Esbjörn
    Karolinska Institutet, Stockholm, Sweden.
    Nahi, Hareth
    Karolinska Institutet, Stockholm, Sweden.
    Hermanson, Monica
    Uppsala University, Sweden.
    Rosenquist, Richard
    Uppsala University, Sweden.
    Höglund, Martin
    University of Gothenburg, Sweden.
    Palmqvist, Lars
    University of Gothenburg, Sweden.
    Stockelberg, Dick
    Sahlgrenska University Hospital, Gothenburg, Sweden.
    Wei, Yuan
    Sahlgrenska University Hospital, Gothenburg, Sweden.
    Gréen, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase2013In: American Journal of Hematology, ISSN 0361-8609, E-ISSN 1096-8652, Vol. 88, no 12, p. 1001-1006Article in journal (Refereed)
    Abstract [en]

    De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A>C rs2072671 and −451C>T rs532545), 5′-nucleotidase (cN-II 7A>G rs10883841), and deoxycytidine kinase (DCK 3′UTR 948T>C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and −451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P < 0.001 and 5 vs. 23 months, P = 0.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P = 0.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML

  • 9.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Khan, Muhammad Suleman
    COMSATS Institute of Information Technology, Abbottabad, Pakistan.
    Thunell, Lena
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Nahi, Hareth
    Karolinska University Hospital and Karolinska Institutet, Huddinge, Sweden.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Association of CYP2B6 Genotype with Survival and Progression Free Survival in Cyclophosphamide Treated Multiple Myeloma2012In: Journal of Cancer Therapy, ISSN 2151-1934, E-ISSN 2151-1942, Vol. 3, no 1, p. 20-27Article in journal (Refereed)
    Abstract [en]

    Objective: Cyclophosphamide is a conventional pro-drug used in Multiple Myeloma (MM) and other malignancies. The highly polymorphic CYP2B6 is suggested as a major contributor in cyclophosphamide bioactivation, and GST en-zymes are involved in detoxification. Polymorphisms of these enzymes may affect enzyme expression and function as well as treatment outcome. The aim of this study was to investigate the impact of the CYP2B6 SNPs G516T, A785G and C1459T, GSTP1 SNP Ile105Val, and GSTM1 and GSTT1 null variants, on the outcome for cyclophosphamide treated MM patients, in order to find markers of value for individualised therapy. Methods: We used allele specific PCR and Pyrosequencing to investigate the impact of CYP2B6 SNPs G516T, A785G and C1459T, GSTP1 Ile105Val, and GSTM1 and GSTT1 variants, on the outcome for 26 cyclophosphamide treated multiple myeloma patients. Results and Major Conclusion:

    The CYP2B6 785G carriers had significantly shorter progression free survival (p = 0.048*) and overall survival (p = 0.037*) with 785G/G patients having the worst outcome compared to patients carrying the wild type. A shorter progression free survival was also indicated in patients carrying both CYP2B6 516T & 785G (p = 0.068). These results indicate a predictive role of CYP2B6 SNPs, particularly A785G, in cyclophosphamide treatment.

  • 10.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Lund, Johan
    Karolinska Institute, Sweden.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. National Board Forens Med, Department Forens Genet and Forens Toxicol, Linkoping, Sweden.
    Gruber, Astrid
    Karolinska Institute, Sweden.
    Alici, Evren
    Karolinska Institute, Sweden.
    Lauri, Birgitta
    Sunderby Hospital, Sweden.
    Blimark, Cecilie
    Sahlgrens University Hospital, Sweden.
    Mellqvist, Ulf-Henrik
    South Elvsborg Hospital, Sweden.
    Swedin, Agneta
    Skåne University Hospital, Sweden.
    Forsberg, Karin
    Norrland University Hospital, Sweden.
    Carlsson, Conny
    Hallands Hospital, Sweden.
    Hardling, Mats
    Uddevalla Central Hospital, Sweden.
    Ahlberg, Lucia
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Nahi, Hareth
    Karolinska Institute, Sweden.
    Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial2018In: Cancer Chemotherapy and Pharmacology, ISSN 0344-5704, E-ISSN 1432-0843, Vol. 81, no 1, p. 183-193Article in journal (Refereed)
    Abstract [en]

    Purpose Despite therapeutic advances, patients with multiple myeloma (MM) continue to experience disease relapse and treatment resistance. The gene ABCB1 encodes the drug transporter P-glycoprotein, which confers resistance through drug extrusion across the cell membrane. Lenalidomide (Len) is excreted mainly via the kidneys, and, given the expression of P-gp in the renal tubuli, single-nucleotide polymorphisms (SNPs) in the ABCB1 gene may influence Len plasma concentrations and, subsequently, the outcome of treatment. We, therefore, investigated the influence of ABCB1 genetic variants on Len treatment outcomes and adverse events (AEs). Methods Ninety patients with relapsed or refractory MM, who received the second-line Len plus dexamethasone in the Rev II trial, were genotyped for the ABCB1 SNPs 1199G amp;gt; A (Ser400Asn, rs2229109), 1236C amp;gt; T (silent, rs1128503), 2677G amp;gt; T/A (Ala893Ser, rs2032582), and 3435C amp;gt; T (silent, rs1045642) using pyrosequencing, and correlations to response parameters, outcomes, and AEs were investigated. Results No significant associations were found between genotype and either best response rates or hematological AEs, and 1236C amp;gt; T, 2677G amp;gt; T or 3435C amp;gt; T genotypes had no impact on survival. There was a trend towards increased time to progression (TTP) in patients carrying the 1199A variant, and a significant difference in TTP between genotypes in patients with standard-risk cytogenetics. Conclusions Our findings show a limited influence of ABCB1 genotype on lenalidomide treatment efficacy and safety. The results suggest that 1199G amp;gt; A may be a marker of TTP following Len treatment in standard-risk patients; however, larger studies are needed to validate and clarify the relationship.

  • 11.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research.
    Willander, Kerstin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Chaireti, Roza
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Acute Internal Medicine.
    Lund, Johan
    Division of hematology, Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.
    Monica, Hermanson
    Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Gréen, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    TP53 mutations identify a subgroup of AML patients with dramatically impaired outcome2014Manuscript (preprint) (Other academic)
    Abstract [en]

    TP53 is commonly mutated in several cancers and confers treatment resistance and poor prognosis. Altered expression of MDM2 (mouse double minute 2), a negative regulator of p53, may also attenuate normal p53 signaling, thereby enhancing tumor transformation and resistance to apoptosis. The single nucleotide polymorphism (SNP) 309 has been reported to increase MDM2 expression and impair normal p53 response. We investigated the frequency and impact of TP53 mutations (TP53mut) and MDM2SNP309 on treatment outcome and overall survival (OS) in 207 Swedish AML patients. We found a high frequency (22%) of TP53mut in patients with cytogenetic aberrations, with strong association to high risk cytogenetics (p<0.001). TP53mut patients had lower response rates compared to TP53 wild-type (wt) patients (22% and 76% CR, respectively, p<0.001) and reduced OS (5 and 21 months, respectively, p<0.001). In TP53wt patients with abnormal karyotype, the MDM2SNP309 conferred an impaired outcome, with patients carrying the alternative G allele  having shorter OS compared to T/T patients (13 and 29 months, p=0.031). In conclusion, our results show that TP53mut analysis as well as MDM2SNP309 genotyping may be useful tools for prognostication, risk stratification and selection of patients most likely to benefit from new drugs targeting the p53 signaling pathway.

  • 12.
    Jakobsen Falk, Ingrid
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Willander, Kerstin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Chaireti, Roza
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Acute Internal Medicine. Karolinska University Hospital, Sweden.
    Lund, Johan
    Huddinge University Hospital, Sweden.
    Nahi, Hareth
    Huddinge University Hospital, Sweden.
    Hermanson, Monica
    Uppsala University, Sweden.
    Green, Henrik
    National Board Forens Med, Department Forens Genet and Forens Toxicol, Linkoping, Sweden.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    TP53 mutations and MDM2(SNP309) identify subgroups of AML patients with impaired outcome2015In: European Journal of Haematology, ISSN 0902-4441, E-ISSN 1600-0609, Vol. 94, no 4, p. 355-362Article in journal (Refereed)
    Abstract [en]

    BackgroundTP53 is commonly mutated in several cancers and confers treatment resistance and poor prognosis. Altered expression of mouse double minute 2 (MDM2), a negative regulator of p53, may also attenuate normal p53 signaling, thereby enhancing tumor transformation and resistance to apoptosis. The single nucleotide polymorphism (SNP) 309 has been reported to increase MDM2 expression and impair normal p53 response. Experimental designWe investigated the frequency and impact of TP53 mutations (TP53mut) and MDM2(SNP309) on treatment outcome and overall survival (OS) in 189 Swedish acute myeloid leukemia patients. The genetic analyses were performed using SSCA and direct sequencing (for mutations in exon 5-8 of TP53) and Pyrosequencing (for the MDM2(SNP309)). ResultsWe found a high frequency (22%) of TP53mut in patients with cytogenetic aberrations, with association to high-risk cytogenetics (Pless than0.001). TP53mut patients had lower response rates (22% compared with 76% CR in TP53 wild-type (wt) patients, Pless than0.001) and reduced OS (2 and 16months, respectively, Pless than0.001). In TP53wt patients with high or intermediate risk cytogenetic aberrations, the MDM2(SNP309) conferred an impaired outcome, with patients carrying the alternative G-allele having shorter OS compared with T/T patients (median 9 vs. 50months, P=0.020). ConclusionsOur results show that TP53mut analysis and MDM2(SNP309) genotyping may be useful tools for prognostication, risk stratification, and selection of patients most likely to benefit from new drugs targeting the p53 signaling pathway.

  • 13.
    Jakobsen, Ingrid
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Prognostic markers in acute myeloid leukemia: A candidate gene approach2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The standard treatment of acute myeloid leukemia (AML) consists of induction chemotherapy, most commonly daunorubicin together with the nucleoside analogue cytarabine (Ara-C), followed by consolidation chemotherapy and in selected cases allogenic stem cell transplantation (allo-SCT). Despite a high initial response rate, a considerable proportion of all AML cases eventually suffer from relapse and the five-year overall survival rate in patients >60 years is only around 15%. Based on cytogenetic analysis, patients are divided into low risk, intermediate risk, and high-risk groups. While low risk patients have a high chance of reaching and remaining in remission after standard induction therapy, high-risk patients are likely to suffer from relapse and should be scheduled for allo-SCT when first complete remission is reached. The intermediate risk group consists of normal karyotype (NK) patients and those with karyotypes of uncertain clinical relevance, but the outcomes are heterogeneous. In NKAML patients, risk classification has improved with the addition of molecular markers including FLT3 internal tandem duplications (ITD) and mutations of NPM1 and CEBPA. Despite this development, there is a group of patients lacking reliable prognostic markers and in some cases the outcomes predicted do not match the outcomes observed, highlighting the need for additional markers. ABCB1 encodes a transporter protein responsible for the extrusion of cytotoxic compounds, including daunorubicin, over the cell membrane, and is a known resistance mechanism. Ara-C is subject to both activating and inactivating metabolic enzymes including DCK (activating), CDA and cN-II (inactivating). ABCB1, DCK, CDA and cN-II are all polymorphic, and SNPs affecting enzyme function and/or activity have potential as prognostic markers. In addition, recurrent IDH1/2 mutations lead to the expression of an enzyme with neomorphic activity associated with epigenetic alterations and disturbed differentiation. Mutations as well as a SNP in codon 105 of IDH1 have prognostic implications in AML, although the effects of different IDH mutations have been unclear. The aim of this thesis was to investigate SNPs in ABCB1 and genes associated with Ara-C metabolism, mutations in IDH1/2 and the IDH1 SNP, and their associations with treatment response and survival in AML. We show that the 1236C>T and 2677G>T SNPs in ABCB1 influence in vitro sensitivity towards AML drugs, with corresponding effects on NK-AML patient survival. These survival differences were seen mainly in patients lacking FLT3-ITD, further adding to the risk stratification. In contrast, the CDA SNPs 79A>C and -451C>T appear to influence survival mainly in FLT3-ITD positive cases. In conclusion, the above-mentioned SNPs have the potential to add important information to risk classifications especially in NK-AML patients with the ambiguous FLT3-ITD-/NPM1- or FLT3-ITD+/NPM1+ genotypes. In addition, we have shown that IDH2 R140 mutation is associated with impaired survival in AML, and that the IDH1 codon 105 SNP appears to confer a worse outcome in a subset of intermediate risk patients without FLT3-ITD. With the introduction of next generation sequencing into clinical diagnostics, IDH mutations may not only provide prognostic information but also guide the selection of patients for new drugs targeting the variant enzyme. Our results indicate that in addition to leukemia-specific mutations, constitutional SNPs may prove useful for further individualizing care-taking and should be considered when implementing these new techniques.

    List of papers
    1. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype
    Open this publication in new window or tab >>Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype
    Show others...
    2012 (English)In: The Pharmacogenomics Journal, ISSN 1470-269X, E-ISSN 1473-1150, Vol. 12, no 2, p. 111-118Article in journal (Refereed) Published
    Abstract [en]

    Overexpression of the multi-drug transporter P-glycoprotein, encoded by the ABCB1 gene, is a clinically relevant problem in acute myeloid leukemia (AML). Polymorphisms in ABCB1 might contribute to cancer risk and therapeutic response. We therefore investigated the influence of polymorphisms G1199A, C1236T, G2677T/A and C3435T on cancer susceptibility, in vitro cytotoxicity and overall survival in 100 de novo AML patients with normal karyotype. Patients with 1236C/C or 2677G/G genotypes showed poorer survival than patients with other genotypes (P = 0.03 and P = 0.02, respectively). Both these genotypes were significant factors for survival in multivariate analysis, along with age, NPM1 and FLT3 mutation status. In vitro cytotoxicity studies demonstrated that leukemic cells from 1236T/T and 2677T/T patients were significantly more susceptible to mitoxantrone (P 0.02), and tended to be more susceptible to etoposide and daunorubicin (P = 0.07-0.09), but not to cytarabine. No significant difference in allele frequencies was found between patients and healthy volunteers (n = 400).

    Place, publisher, year, edition, pages
    Nature Publishing Group, 2012
    Keywords
    ABCB1, acute myeloid leukemia, single-nucleotide polymorphisms, anthracyclines
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-76805 (URN)10.1038/tpj.2010.79 (DOI)000302133700004 ()
    Note

    Funding Agencies|Swedish Cancer Society||Swedish Research Council-Medicine||Cancer Society in Stockholm||Karolinska Institutet||County Council in Ostergotland||

    Available from: 2012-04-20 Created: 2012-04-20 Last updated: 2018-12-19Bibliographically approved
    2. Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase
    Open this publication in new window or tab >>Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5'-nucleotidase
    Show others...
    2013 (English)In: American Journal of Hematology, ISSN 0361-8609, E-ISSN 1096-8652, Vol. 88, no 12, p. 1001-1006Article in journal (Refereed) Published
    Abstract [en]

    De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A>C rs2072671 and −451C>T rs532545), 5′-nucleotidase (cN-II 7A>G rs10883841), and deoxycytidine kinase (DCK 3′UTR 948T>C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and −451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P < 0.001 and 5 vs. 23 months, P = 0.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P = 0.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML

    Place, publisher, year, edition, pages
    John Wiley & Sons, 2013
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-98699 (URN)10.1002/ajh.23549 (DOI)000327224000125 ()23873772 (PubMedID)
    Available from: 2013-10-11 Created: 2013-10-11 Last updated: 2018-12-19
    3. Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype
    Open this publication in new window or tab >>Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype
    Show others...
    2014 (English)In: British Journal of Haematology, ISSN 0007-1048, E-ISSN 1365-2141, Vol. 167, no 5, p. 671-680Article in journal (Refereed) Published
    Abstract [en]

    Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199Ggreater thanA, 1236Cgreater thanT, 2677Ggreater thanT/A and 3435Cgreater thanT, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0.017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0.039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236Cgreater thanT and 2677Ggreater thanT may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.

    Place, publisher, year, edition, pages
    Wiley, 2014
    Keywords
    acute myeloid leukaemia; ABCB1; single nucleotide polymorphism; anthracyclines; FLT3
    National Category
    Clinical Medicine
    Identifiers
    urn:nbn:se:liu:diva-112996 (URN)10.1111/bjh.13097 (DOI)000345222100009 ()25155901 (PubMedID)
    Note

    Funding Agencies|Swedish Cancer Society; County Council of Ostergotland; AFA Insurance; Stockholm Cancer Society; Karolinska Institutet; Swedish Research Council

    Available from: 2015-01-12 Created: 2015-01-08 Last updated: 2019-01-10
    4. Mutations in the isocitrate dehydrogenase 1/2 genes and IDH1 SNP 105C>T have a prognostic value in acute myeloid leukemia
    Open this publication in new window or tab >>Mutations in the isocitrate dehydrogenase 1/2 genes and IDH1 SNP 105C>T have a prognostic value in acute myeloid leukemia
    Show others...
    2014 (English)In: Biomarker Research, ISSN 2050-7771, Vol. 2, no 18Article in journal (Refereed) Published
    Abstract [en]

    The isocitrate dehydrogenase (IDH1/IDH2) genes are frequently mutated and reported to associate with poor prognosis in acute myeloid leukemia (AML). We have investigated the frequency and outcome of the acquired IDH1/IDH2 mutations and the IDH1 SNP  105C>T (rs11554137) in 207 unselected de novo AML patients. IDH1 codon 132 mutations were present in 7.7%, whereas IDH2 mutations were more frequent and mutations were identified in codon 140 and 172 in a frequency of 10.1% and 2.9%, respectively. The SNP 105C>T was present in 10.1% of the patients, similar to the normal population. A significantly reduced overall survival (OS) for patients carrying IDH2 codon 140 mutation compared with patients carrying wild-type IDH2 gene (p=0.009) was observed in the intermediate risk patient group with cytogenetically normal karyotype (CN-AML). Neither in the entire patient group nor subdivided in different risk groups, IDH1 mutations had any significance on OS compared to the wild-type IDH1 patients. A significant difference in OS between the heterozygous SNP variant and the homozygous wild-type was observed in the intermediate risk FLT3 negative CN-AML, (p=0.007). Our results indicate that IDH2 mutations and the IDH1 SNP 105C>T variant may represent a new subgroup for risk stratification and may indicate new treatment options.

    Keywords
    AML, IDH1, IDH2, SNP, prognostic markers
    National Category
    Clinical Medicine Medical Genetics
    Identifiers
    urn:nbn:se:liu:diva-104949 (URN)10.1186/2050-7771-2-18 (DOI)
    Available from: 2014-03-04 Created: 2014-03-04 Last updated: 2018-12-19Bibliographically approved
  • 14.
    Karlsson, Louise
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Zackrisson, Anna Lena
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Bengtsson, Finn
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Jakobsen Falk, I
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Carlsson, Björn
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Ahlner, Johan
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Kugelberg, Fredrik
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    ABCB1 gene polymorphisms are associated with fatal intoxications involving venlafaxine but not citalopram2013In: International journal of legal medicine (Print), ISSN 0937-9827, E-ISSN 1437-1596, Vol. 127, no 3, p. 579-586Article in journal (Refereed)
    Abstract [en]

    P-glycoprotein (P-gp), encoded by the ABCB1/MDR1 gene, is a drug transporter at the blood–brain barrier. Several polymorphisms in the ABCB1 gene are known to affect the activity and/or expression of P-gp, thereby influencing the treatment response and toxicity of P-gp substrates like citalopram and venlafaxine. In this study, we aimed to investigate the frequency of ABCB1 genotypes in forensic autopsy cases involving these two antidepressants. Further, the distribution of ABCB1 genotypes in deaths related to intoxication was compared to cases not associated to drug intoxication. The study included 228 forensic autopsy cases with different causes and manners of deaths. The ABCB1 single nucleotide polymorphisms (SNPs) G1199A, C1236T, C3435T and G2677T/A for these individuals were determined. The SNPs C1236T and C3435T in venlafaxine-positive cases were significantly different between the intoxication cases and non-intoxications. This was not seen for cases involving citalopram, indicating that the effect of genetic variants might be substrate specific. This novel finding should, however, be confirmed in future studies with larger number of cases.

  • 15.
    Karlsson, Louise
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Green, Henrik
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Zackrisson, Anna Lena
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Bengtsson, Finn
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pharmacology.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Carlsson, Björn
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pharmacology.
    Ahlner, Johan
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    Kugelberg, Fredrik C.
    Linköping University, Department of Medical and Health Sciences, Clinical Pharmacology. Linköping University, Faculty of Health Sciences.
    ABCB1 gene polymorphisms in forensic autopsy cases positive for citalopram and venlafaxineManuscript (preprint) (Other academic)
    Abstract [en]

    P-glycoprotein (P-gp), encoded by the ABCB1/MDR1 gene, is a drug transporter expressed on e.g. the endothelial cells of the blood-brain barrier which regulates the efflux of many drugs. Several polymorphisms in the ABCB1 gene are known to affect the activity and/or expression of P-gp, thereby influencing the treatment response and toxicity of P-gp substrates. It has previously been shown that the antidepressant drugs citalopram and venlafaxine are actively transported out of the brain by P-gp using a mouse model. In the present study we aimed to investigate the frequency of ABCB1 genotypes in forensic autopsy cases positive for these two antidepressants. Further, the distribution of ABCB1 genotypes in deaths related to intoxication was compared to cases not associated to drug intoxication. The present study included 228 forensic autopsy cases positive for venlafaxine and citalopram with different causes of deaths. The ABCB1 single nucleotide polymorphisms (SNPs) G1199A, C1236T, C3435T and G2677T/A for these individuals were determined by Pyrosequencing. The SNPs C1236T, G2677T and C3435T in venlafaxine positive cases were significantly different between the intoxication cases and non-intoxications. The latter novel finding should, however, be confirmed in future studies with larger number of cases.

  • 16.
    Mosrati, Mohamed Ali
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Willander, Kerstin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Hermanson, Monica
    Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Höglund, Martin
    Division of Hematology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
    Stockelberg, Dick
    Section for Hematology and Coagulation, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Wei, Yuan
    Section for Hematology and Coagulation, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Lotfi, Kourosh
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pharmacology.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Association between TERT promoter polymorphisms and acute myeloid leukemia risk and prognosis2015In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 6, no 28, p. 25109-25120Article in journal (Refereed)
    Abstract [en]

    Telomerase reverse transcriptase gene (TERT) promoter mutations are identified in many malignancies but not in hematological malignancies. Here we analyzed TERT and protection of telomeres 1 gene (POT1) mutations, and four different TERT SNVs in 226 acute myeloid leukemia (AML) patients and 806 healthy individuals in a case referent design, where also overall survival was assessed. A significant association for increased risk of AML was found for TERT SNVs, rs2853669 (OR = 2.45, p = 0.00015) and rs2736100 (OR = 1.5, p = 0.03). The overall survival for patients with CC genotype of rs2853669 was significantly shorter compared to those with TT or TC genotypes (p = 0.036 and 0.029 respectively). The influence of TERT rs2853669 CC on survival was confirmed in multivariable Cox regression analysis as an independent risk biomarker in addition to high risk group, higher age and treatment. No hot spot TERT promoter mutations at -228Cgreater thanT or -250Cgreater thanT or POT1 mutations could be identified in this AML cohort. We show that rs2853669 CC may be a risk factor for the development of AML that may also be used as a prognostic marker to identify high risk normal karyotype -AML (NK-AML) patients, for treatment guidance.

  • 17.
    Willander, Kerstin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Jakobsen Falk, Ingrid
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research.
    Chaireti, Roza
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Acute Internal Medicine.
    Paul, Esbjörn
    Division of Hematology, Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.
    Monica, Hermanson
    Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Gréen, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
    Lotfi, Kourosh
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pharmacology.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Mutations in the isocitrate dehydrogenase 1/2 genes and IDH1 SNP 105C>T have a prognostic value in acute myeloid leukemia2014In: Biomarker Research, ISSN 2050-7771, Vol. 2, no 18Article in journal (Refereed)
    Abstract [en]

    The isocitrate dehydrogenase (IDH1/IDH2) genes are frequently mutated and reported to associate with poor prognosis in acute myeloid leukemia (AML). We have investigated the frequency and outcome of the acquired IDH1/IDH2 mutations and the IDH1 SNP  105C>T (rs11554137) in 207 unselected de novo AML patients. IDH1 codon 132 mutations were present in 7.7%, whereas IDH2 mutations were more frequent and mutations were identified in codon 140 and 172 in a frequency of 10.1% and 2.9%, respectively. The SNP 105C>T was present in 10.1% of the patients, similar to the normal population. A significantly reduced overall survival (OS) for patients carrying IDH2 codon 140 mutation compared with patients carrying wild-type IDH2 gene (p=0.009) was observed in the intermediate risk patient group with cytogenetically normal karyotype (CN-AML). Neither in the entire patient group nor subdivided in different risk groups, IDH1 mutations had any significance on OS compared to the wild-type IDH1 patients. A significant difference in OS between the heterozygous SNP variant and the homozygous wild-type was observed in the intermediate risk FLT3 negative CN-AML, (p=0.007). Our results indicate that IDH2 mutations and the IDH1 SNP 105C>T variant may represent a new subgroup for risk stratification and may indicate new treatment options.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf