liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 20 of 20
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abrahamsson, Tobias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sandberg, Mats
    RISE Acreo AB, Sweden.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Formation of Monolithic Ion-Selective Transport Media Based on "Click" Cross-Linked Hyperbranched Polyglycerol2019Inngår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, artikkel-id 484Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.

  • 2.
    Arbring Sjöström, Theresia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Janson, Per
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Seitanidou, Maria S.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    A Decade of Iontronic Delivery Devices2018Inngår i: Advanced Materials Technologies, ISSN 2365-709X, Vol. 3, nr 5, artikkel-id 1700360Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In contrast to electronic systems, biology rarely uses electrons as the signal to regulate functions, but rather ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conjugated polymers and polyelectrolytes, these materials have emerged as an excellent tool for translating signals between these two realms, hence the field of organic bioelectronics. Since organic bioelectronics relies on the electron-mediated transport and compensation of ions (or the ion-mediated transport and compensation of electrons), a great deal of effort has been devoted to the development of so-called "iontronic" components to effect precise substance delivery/transport, that is, components where ions are the dominant charge carrier and where ionic-electronic coupling defines device functionality. This effort has resulted in a range of technologies including ionic resistors, diodes, transistors, and basic logic circuits for the precisely controlled transport and delivery of biologically active chemicals. This Research News article presents a brief overview of some of these "ion pumping" technologies, how they have evolved over the last decade, and a discussion of applications in vitro, in vivo, and in plantae.

  • 3.
    Arbring Sjöström, Theresia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Amanda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds2019Inngår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, artikkel-id 1900750Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Current neural interfaces rely on electrical stimulation pulses to affect neural tissue. The development of a chemical delivery technology, which can stimulate neural tissue with the bodys own set of signaling molecules, would provide a new level of sophistication in neural interfaces. Such technology should ideally provide highly local chemical delivery points that operate at synaptic speed, something that is yet to be accomplished. Here, the development of a miniaturized ionic polarization diode that exhibits many of the desirable properties for a chemical neural interface technology is reported. The ionic diode shows proper diode rectification and the current switches from off to on in 50 mu s at physiologically relevant electrolyte concentrations. A device model is developed to explain the characteristics of the ionic diode in more detail. In combination with experimental data, the model predicts that the ionic polarization diode has a delivery delay of 5 ms to reach physiologically relevant neurotransmitter concentrations at subcellular spatial resolution. The model further predicts that delays of amp;lt;1 ms can be reached by further miniaturization of the diode geometry. Altogether, the results show that ionic polarization diodes are a promising building block for the next generation of chemical neural interfaces.

    Fulltekst tilgjengelig fra 2020-11-22 14:26
  • 4.
    Arbring Sjöström, Theresia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Amanda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stanford University, CA 94305 USA.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Aix Marseille University, France.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 36, s. 30247-30252Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film LEMs hamper future developments of this technology. Here we address this limitation by developing a cationic IEM with excellent processability and ionic selectivity: poly(4-styrenesulfonic acidco-maleic acid) (PSS-co-MA) cross-linked with polyethylene glycol (PEG). This enables new design opportunities and provides enhanced compatibility with in vitro cell studies. PSSA-co-MA/PEG is shown to out-perform the cation selectivity of the previously used iontronic material.

  • 5.
    Bernacka Wojcik, Iwona
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Huerta, Miriam
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Karady, Michal
    Swedish Univ Agr Sci, Sweden.
    Mulla, Yusuf
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ljung, Karin
    Swedish Univ Agr Sci, Sweden.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant2019Inngår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 15, nr 43, artikkel-id 1902189Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 mu m scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plants tolerance to stress, induces closure of stomata, the microscopic pores in leafs epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.

  • 6.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Armgarth, Astrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Spatiotemporal Control of Amyloid-Like A Plaque Formation Using a Multichannel Organic Electronic Device2016Inngår i: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 301, nr 4, s. 359-363Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We herein report on an iontronic device to drive and control A1-40 and A1-42 fibril formation. This system allows kinetic control of A aggregation by regulation of H+ flows. The formed aggregates show both nanometer-sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+-outlet. Mechanistically we observed initial accumulation of A1-40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  • 7.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Polyphosphonium-based bipolar membranes for rectification of ionic currents2013Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 7, nr 6, s. 064117-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e. g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules.

  • 8.
    Gabrielsson, Erik O.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Monopolar and Bipolar Membranes in Organic Bioelectronic Devices2014Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    In the 1970s it was discovered that organic polymers, a class of materials otherwise best know as insulating plastics, could be made electronically conductive. As an alternative to silicon semiconductors, organic polymers offer many novel features, characteristics, and opportunities, such as producing electronics at low costs using printing techniques, using organic chemistry to tune optical and electronic properties, and mechanical flexibility. The conducting organic polymers have been used in a vast array of devices, exemplified by organic transistors, light-emitting diodes, and solar cells. Due to their softness, biocompatibility, and combined electronic and ionic transport, organic electronic materials are also well suited as the active material in bioelectronic applications, a scientific and engineering area in which electronics interface with biology. The coupling of ions and electrons is especially interesting, as ions serve as signal carriers in all living organisms, thus offering a direct translation of electronic and ionic signals. To further enable complex control of ionic fluxes, organic electronic materials can be integrated with various ionic components, such as ion-conducting diodes and transistors.

    This thesis reports a background to the field of organic bioelectronic and ionic devices, and also presents the integration of ionic functions into organic bioelectronic devices. First, an electrophoretic drug delivery device is presented, capable of delivering ions at high spatiotemporal resolution. The device, called the organic electronic ion pump, is used to electronically control amyloid-like aggregation kinetics and morphology of peptides, and offers an interesting method for studying amyloids in vitro. Second, various ion-conducting diodes based on bipolar membranes are described. These diodes show high rectification ratio, i.e. conduct ions better for positive than for negative applied voltage. Simple ion diode based circuits, such as an AND gate and a full-wave rectifier, are also reported. The AND gate is intended as an addressable pH pixel to regulate for example amyloid aggregation, while the full-wave rectifier decouples the electrochemical capacity of an electrode from the amount of ionic charge it can generate. Third, an ion transistor, also based on bipolar membranes, is presented. This transistor can amplify and control ionic currents, and is suitable for building complex ionic logic circuits. Together, these results provide a basic toolbox of ionic components that is suitable for building more complex and/or implantable organic bioelectronic devices.

    Delarbeid
    1. Spatially Controlled Amyloid Reactions Using Organic Electronics
    Åpne denne publikasjonen i ny fane eller vindu >>Spatially Controlled Amyloid Reactions Using Organic Electronics
    Vise andre…
    2010 (engelsk)Inngår i: SMALL, ISSN 1613-6810, Vol. 6, nr 19, s. 2153-2161Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.

    sted, utgiver, år, opplag, sider
    John Wiley and Sons, Ltd, 2010
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-61175 (URN)10.1002/smll.201001157 (DOI)000283274100013 ()
    Tilgjengelig fra: 2010-11-08 Laget: 2010-11-05 Sist oppdatert: 2018-04-25
    2. Controlled Microscopic Formation of Amyloid-Like Aβ Aggregates Using an Organic Electronic Device
    Åpne denne publikasjonen i ny fane eller vindu >>Controlled Microscopic Formation of Amyloid-Like Aβ Aggregates Using an Organic Electronic Device
    Vise andre…
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Alzheimer’s disease (AD), primarily associated with formation of fibrillar amyloid-beta peptide (Aβ) aggregates in the brain, is one of the most common old-age diseases. It is therefore crucial with an elevated scientific interest in Aβ, and its fundamental properties in a wide sense, to develop efficient methods for early detection and to combat AD. For the development of new techniques, both for AD detection and prevention, researchers are dependent on either tissue samples from deceased patients, animal models or in vitro systems. In vitro systems, such as producing protein aggregates of the Aβ-peptide in a test tube by incubation under denaturing conditions, offers us a simple but rather blunt tool for evaluating aggregation inhibition caused by compounds or to investigate new detection methods. We recently introduced the organic electronic ion pump (OEIP) as a method for creating amyloid-like aggregates at high spatiotemporal control as compared to the resulting aggregates manufactured using regular test tube-conditions. Combined with a fluorescent probe that is specific for the fibrillar aggregated form of misfolded peptides commonly seen in AD, this allowed us to control and to monitor the aggregation of a model peptide system in a highly confined space.

    To further elaborate the functionality of the OEIP together with amyloid-specific probes, we here present experiments demonstrating electronically controlled micron sized formation of Aβ-aggregates with morphologies ranging from fine fibers, to bundles of fibers, and thick mesh-like fiber structures. We foresee that the methodology can be implemented in multi array systems that can be utilized for studies of protein aggregation in confined spaces or together with cultured cells, as well as for the development of screening platforms for assessment of molecules influencing the Aβ-aggregation process.

    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-110401 (URN)
    Tilgjengelig fra: 2014-09-10 Laget: 2014-09-10 Sist oppdatert: 2018-04-25bibliografisk kontrollert
    3. Ion diode logics for pH control
    Åpne denne publikasjonen i ny fane eller vindu >>Ion diode logics for pH control
    2012 (engelsk)Inngår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, nr 14, s. 2507-2513Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Electronic control over the generation, transport, and delivery of ions is useful in order to regulate reactions, functions, and processes in various chemical and biological systems. Different kinds of ion diodes and transistors that exhibit non-linear current versus voltage characteristics have been explored to generate chemical gradients and signals. Bipolar membranes (BMs) exhibit both ion current rectification and water splitting and are thus suitable as ion diodes for the regulation of pH. To date, fast switching ion diodes have been difficult to realize due to accumulation of ions inside the device structure at forward bias – charges that take a long time to deplete at reverse bias. Water splitting occurs at elevated reverse voltage bias and is a feature that renders high ion current rectification impossible. This makes integration of ion diodes in circuits difficult. Here, we report three different designs of micro-fabricated ion bipolar membrane diodes (IBMDs). The first two designs consist of single BM configurations, and are capable of either splitting water or providing high current rectification. In the third design, water-splitting BMs and a highly-rectifying BM are connected in series, thus suppressing accumulation of ions. The resulting IBMD shows less hysteresis, faster off-switching, and also a high ion current rectification ratio as compared to the single BM devices. Further, the IBMD was integrated in a diode-based AND gate, which is capable of controlling delivery of hydroxide ions into a receiving reservoir.

    sted, utgiver, år, opplag, sider
    Cambridge, UK: Royal Society of Chemistry, 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-78002 (URN)10.1039/C2LC40093F (DOI)000305532600009 ()
    Tilgjengelig fra: 2012-06-04 Laget: 2012-06-04 Sist oppdatert: 2017-12-07
    4. Polyphosphonium-based bipolar membranes for rectification of ionic currents
    Åpne denne publikasjonen i ny fane eller vindu >>Polyphosphonium-based bipolar membranes for rectification of ionic currents
    2013 (engelsk)Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 7, nr 6, s. 064117-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e. g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2013
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-103883 (URN)10.1063/1.4850795 (DOI)000329292200020 ()
    Tilgjengelig fra: 2014-01-30 Laget: 2014-01-30 Sist oppdatert: 2017-12-06
    5. A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity
    Åpne denne publikasjonen i ny fane eller vindu >>A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity
    Vise andre…
    2014 (engelsk)Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 30, s. 5143-5147Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.

    sted, utgiver, år, opplag, sider
    Wiley-VCH Verlagsgesellschaft, 2014
    Emneord
    bioelectronics, ionics, ion transport, bipolar membranes, conjugated polymer electrodes
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-110403 (URN)10.1002/adma.201401258 (DOI)000340546300010 ()24863171 (PubMedID)
    Forskningsfinansiär
    Vinnova, 2010–00507EU, FP7, Seventh Framework Programme, iONE-FP7Swedish Research Council, 621–2011–3517EU, FP7, Seventh Framework Programme, OrgBIO
    Tilgjengelig fra: 2014-09-10 Laget: 2014-09-10 Sist oppdatert: 2017-12-05bibliografisk kontrollert
    6. Polyphosphonium-Based Ion Bipolar Junction Transistors
    Åpne denne publikasjonen i ny fane eller vindu >>Polyphosphonium-Based Ion Bipolar Junction Transistors
    2014 (engelsk)Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 8, nr 6, s. 064116-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons, but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e. ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example addressable drug-delivery devices.

    Emneord
    WATER DISSOCIATION; NANOFLUIDIC DIODE; MEMBRANES; CIRCUITS
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-110400 (URN)10.1063/1.4902909 (DOI)000347160400018 ()
    Merknad

    This research was financed by VINNOVA (OBOE Miljo and AFM), the Swedish Research Council, and the Onnesjo foundation.

    Tilgjengelig fra: 2014-09-10 Laget: 2014-09-10 Sist oppdatert: 2017-12-05bibliografisk kontrollert
  • 9.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Armgarth, Astrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Nilsson, K. Peter N.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Controlled Microscopic Formation of Amyloid-Like Aβ Aggregates Using an Organic Electronic DeviceManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Alzheimer’s disease (AD), primarily associated with formation of fibrillar amyloid-beta peptide (Aβ) aggregates in the brain, is one of the most common old-age diseases. It is therefore crucial with an elevated scientific interest in Aβ, and its fundamental properties in a wide sense, to develop efficient methods for early detection and to combat AD. For the development of new techniques, both for AD detection and prevention, researchers are dependent on either tissue samples from deceased patients, animal models or in vitro systems. In vitro systems, such as producing protein aggregates of the Aβ-peptide in a test tube by incubation under denaturing conditions, offers us a simple but rather blunt tool for evaluating aggregation inhibition caused by compounds or to investigate new detection methods. We recently introduced the organic electronic ion pump (OEIP) as a method for creating amyloid-like aggregates at high spatiotemporal control as compared to the resulting aggregates manufactured using regular test tube-conditions. Combined with a fluorescent probe that is specific for the fibrillar aggregated form of misfolded peptides commonly seen in AD, this allowed us to control and to monitor the aggregation of a model peptide system in a highly confined space.

    To further elaborate the functionality of the OEIP together with amyloid-specific probes, we here present experiments demonstrating electronically controlled micron sized formation of Aβ-aggregates with morphologies ranging from fine fibers, to bundles of fibers, and thick mesh-like fiber structures. We foresee that the methodology can be implemented in multi array systems that can be utilized for studies of protein aggregation in confined spaces or together with cultured cells, as well as for the development of screening platforms for assessment of molecules influencing the Aβ-aggregation process.

  • 10.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Janson, Per
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Simon, Daniel T.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity2014Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 30, s. 5143-5147Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.

  • 11.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Ion diode logics for pH control2012Inngår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, nr 14, s. 2507-2513Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electronic control over the generation, transport, and delivery of ions is useful in order to regulate reactions, functions, and processes in various chemical and biological systems. Different kinds of ion diodes and transistors that exhibit non-linear current versus voltage characteristics have been explored to generate chemical gradients and signals. Bipolar membranes (BMs) exhibit both ion current rectification and water splitting and are thus suitable as ion diodes for the regulation of pH. To date, fast switching ion diodes have been difficult to realize due to accumulation of ions inside the device structure at forward bias – charges that take a long time to deplete at reverse bias. Water splitting occurs at elevated reverse voltage bias and is a feature that renders high ion current rectification impossible. This makes integration of ion diodes in circuits difficult. Here, we report three different designs of micro-fabricated ion bipolar membrane diodes (IBMDs). The first two designs consist of single BM configurations, and are capable of either splitting water or providing high current rectification. In the third design, water-splitting BMs and a highly-rectifying BM are connected in series, thus suppressing accumulation of ions. The resulting IBMD shows less hysteresis, faster off-switching, and also a high ion current rectification ratio as compared to the single BM devices. Further, the IBMD was integrated in a diode-based AND gate, which is capable of controlling delivery of hydroxide ions into a receiving reservoir.

  • 12.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Polyphosphonium-Based Ion Bipolar Junction Transistors2014Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 8, nr 6, s. 064116-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons, but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e. ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example addressable drug-delivery devices.

  • 13.
    Gabrielsson, Erik O
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biokemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    Spatially Controlled Amyloid Reactions Using Organic Electronics2010Inngår i: SMALL, ISSN 1613-6810, Vol. 6, nr 19, s. 2153-2161Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.

  • 14.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biocompatible Circuits for Human–Machine Interfacing2018Inngår i: Green Materials for Electronics / [ed] Mihai Irimia-Vladu, Eric D. Głowacki, Niyazi Sariciftci, Siegfried Bauer, Wiley-VCH Verlagsgesellschaft, 2018, s. 91-118Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    Conventional electronic devices have evolved from the first transistors introduced in the 1940s to integrated circuits and today's modern (CMOS) computer chips fabricated on silicon wafers using photolithography. This chapter reviews such iontronic devices for signal translation and their application in bioelectronics. It begins with a brief description of the ion transport mechanisms that lay the conceptual groundwork for this type of iontronic devices. The chapter presents various iontronic devices aimed at bioelectronic applications. It outlines the future possible developments of iontronics for human-machine interfacing. The physical interface between electronic devices and biological tissues is of particular interest, as this interface bridges the gap between artificial, humanmade technologies and biological "circuits". Ion-conducting diodes and transistors can be used to build circuits for modulation of ion flow, with the possibility of mimicking the dynamic and nonlinear processes occurring in the body.

  • 15.
    Janson, Per
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    An Ionic Capacitor for Integrated Iontronic Circuits2019Inngår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 4, nr 4, artikkel-id 1800494Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic electronics, in combination with custom polyelectrolytes, enables solid- and hydrogel-state circuit components using ionic charges in place of the electrons of traditional electronics. This growing field of iontronics leverages anion- and cation-exchange membranes as analogs to n-type and p-type semiconductors, and conjugated polymer electrodes as ion-to-electron converters. To date, the iontronics toolbox includes ionic resistors, ionic diodes, ionic transistors, and analog and digital circuits comprised thereof. Here, an ionic capacitor based on mixed electron-ion conductors is demonstrated. The ionic capacitor resembles the structure of a conventional electrochemical capacitor that is inverted, with an electronically conducting core and two electrolyte ionic conductors. The device is first verified as a capacitor, and then demonstrated as a smoothing element in an iontronic diode bridge circuit driving an organic electronic ion pump (ionic resistor). The ionic capacitor complements the existing iontronics toolbox, enabling more complex and functional ionic circuits, and will thus have implications in a variety of mixed electron-ion conduction technologies.

  • 16.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors2011Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 6, s. 063305-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Complementary circuits, processing digital signals, are a cornerstone of modern electronics. Such circuits require both p-and n-type transistors. Polyelectrolytes are used as gate insulators in organic thin film transistors (OTFTs) to establish an electric double layer capacitor upon gate bias that allows low operational voltages (andlt;1 V). However, stable and low-voltage operating n-channel organic transistors have proven difficult to construct. Here, we report ultra-low voltage n-channel organic polymer-based transistors that are stable in ambient atmosphere. Our n-type OTFTs exhibit on/off ratios around 10(3) for an applied drain potential as low as 0.1 V. Since small ions are known to promote electrochemical reactions within the semiconductors channel bulk and typically slow down the transistor, we use a solid polycationic gate insulator that suppresses penetration of anions into the n-channel semiconductor. As a result, our n-channel OTFTs switch on in under 5 ms and off in less than 1 ms.

  • 17.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Electrochromic Bipolar Membrane Diode2015Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 27, nr 26, s. 3909-+Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the devices bistability. Such devices can be made from solution-processable materials.

  • 18.
    Poxson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bonisoli, Alberto
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Ist Italiano Tecnol, Italy; St Anna Sch Adv Studies, Italy.
    Linderhed, Ulrika
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Res Inst Sweden, Sweden.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Matthiesen, Isabelle
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Capillary-Fiber Based Electrophoretic Delivery Device2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 15, s. 14200-14207Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple one-pot fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including large substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

    Fulltekst tilgjengelig fra 2020-03-27 15:15
  • 19.
    Simon, Daniel T
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology2016Inngår i: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 116, nr 21, s. 13009-13041Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.

  • 20.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Toward Complementary Ionic Circuits: The npn Ion Bipolar Junction Transistor2011Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, nr 26, s. 10141-10145Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications.

1 - 20 of 20
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf