liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Axin, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Braun, Robert
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Dell'Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Eriksson, Björn
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Nordin, Peter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Pettersson, Karl
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Next Generation Simulation Software using Transmission Line Elements2010In: Fluid Power and Motion Control / [ed] Dr D N Johnston and Professor A R Plummer, Centre for Power Transmission and Motion Control , 2010, p. 265-276Conference paper (Refereed)
    Abstract [en]

    A suitable method for simulating large complex dynamic systems is represented by distributed modelling using transmission line elements. The method is applicable to all physical systems, such as mechanical, electrical and pneumatics, but is particularly well suited to simulate systems where wave propagation is an important issue, for instance hydraulic systems. By using this method, components can be numerically isolated from each other, which provide highly robust numerical properties. It also enables the use of multi-core architecture since a system model can be composed by distributed simulations of subsystems on different processor cores.

    Technologies based on transmission lines has successfully been implemented in the HOPSAN simulation package, develop at Linköping University. Currently, the next generation of HOPSAN is developed using an object-oriented approach. The work is focused on compatibility, execution speed and real-time simulation in order to facilitate hardware-in-the-loop applications. This paper presents the work progress and some possible features in the new version of the HOPSAN simulation package.

  • 2.
    Dell' Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Henriksen, Fredrik
    Skogforsk, the Swedish Forestry Research Institute of Sweden.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Modelling and experimental verification of a secondary controlled six-wheel pendulum arm forwarder2015In: the 13th European Conference of ISTVS / [ed] Roberto Paoluzzi, 2015, p. 1-10Conference paper (Refereed)
    Abstract [en]

    One of the major concerns in the forest industry is the impact on the soil caused by the forest machines duringharvesting, where damages can have a negative impact on e.g. further growth. One of the main reasons is wheel slip.Another concern is the working environment of the operator due to the harsh ground in the forest. Both these issueshave a negative impact on productivity. An attempt to overcome these challenges is made within a collaborative researchproject, which among others also includes Linköping University, where a new six-wheel pendulum arm forwarder isbeing developed. The new forwarder aims at reducing the soil damage by an even pressure distribution and smooth torquecontrol, as well as increased damping of the complete chassis, and thereby improving the working environment. This ispossible since each wheel, driven by its own hydraulic motor, is attached to a pendulum arm allowing to control the heightof each wheel independently of each other. The forwarder has a total maximum weight of 31 tonnes, including 14 tonnesmaximum load. It consists of two steerable joints and is driven by a 360 bhp diesel engine. The transmission consists oftwo hydraulic pumps and six hydraulic motors.This paper deals with the development of the driveline and presents the first experimental tests of the implementedcontrol strategies, where a secondary control approach is chosen for its ability to individually control the torque on eachwheel. The control strategies, presented in the paper, include pressure control, velocity control of the vehicle and ananti-slip controller. To support the development of the control strategies, models of the vehicle and hydraulic subsystemsare derived. The aim with this paper is to verify the concepts on the actual vehicle. The initial results are promising,indicating that the suggested concept is feasible.

  • 3.
    Dell'Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Hardware-in-the-loop simulering av elektrohydraulisk servostyrning för tunga fordon2012In: Hydraulikdagarna 2012, 2012Conference paper (Refereed)
    Abstract [sv]

    Ökade krav på säkrare fordon i trafiken har lett till att forskningen har inriktat sig mot mer styrningsrelaterade säkerhets-funktioner. I ett komplett scenario används ett flertal sensorer för att detektera bl.a. hinder och fordonets placering på vägen.Denna information nyttjas sedan för att skapa en hotbild och beslut måste tas för att undvika en kommande olycka. I grundenmåste det finnas en aktuator som tillåter att ändra hjulvinkeln eller det moment som krävs för att vrida hjulen. Samtidigt ökar ständigt kraven på lägre utsläpp för fordon, där även styrservot är en bidragane faktor. I personbilsindustrin har man löst detta genom att införa ett rent elektriskt styrservo. Till skillnad mot det traditionella styrservot som är rent hydraulmekaniskt, kan man i ett elektriskt styrservo manipulera den assistans som servot ger samtidigt som energiförbrukning minskar dramatiskt. För tunga fordon är det idag inte möjligt att införa rent elektrisk styrservo, framförallt p.g.a. de stora laster som förekommer. Detta projekt syftar till att undersöka möjligheterna att implementera aktiv styrning i tunga fordon samtidigt som energiförbrukning kan minskas. Detta görs med hjälp av en konceptstudie där hardware-in-the-loop simulering är en viktig del för att untvärdera olika koncept. Testriggen som har tagits fram består till hårdvaran av ett styrservo och till mjukvaran av en fordonsmodell. Testriggen är generisk vilket innebär att vilket koncept som helst inom samma kategori kan implementeras och utvärderas. Därav kan testriggen vara en del i designprocessen.

  • 4.
    Dell'Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    On Electrohydraulic Pressure Control for Power Steering Applications: Active Steering for Road Vehicles2016Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis deals with the Electrohydraulic Power Steering system for road vehicles, using electronic pressure control valves. With an ever increasing demand for safer vehicles and fewer traffic accidents, steering-related active safety functions are becoming more common in modern vehicles. Future road vehicles will also evolve towards autonomous vehicles, with several safety, environmental and financial benefits. A key component in realising such solutions is active steering.

    The power steering system was initially developed to ease the driver's workload by assisting in turning the wheels. This is traditionally done through a passive open-centre hydraulic system and heavy trucks must still rely on fluid power, due to the heavy work forces. Since the purpose of the original system is to control the assistive pressure, one way would be to use proportional pressure control valves. Since these are electronically controlled, active steering is possible and with closed-centre, energy efficiency can be significantly improved on.

    In this work, such a system is analysed in detail with the purpose of investigating the possible use of the system for Boost curve control and position control for autonomous driving. Commercially available valves are investigated since they provide an attractive solution. A model-based approach is adopted, where simulation of the system is an important tool. Another important tool is hardware-in-the-loop simulation. A test rig of an electrohydraulic power steering system, is developed.

    This work has shown how proportional pressure control valves can be used for Boost curve control and position control and what implications this has on a system level. As it turns out, the valves add a great deal of time lag and with the high gain from the Boost curve, this creates a control challenge. The problem can be handled by tuning the Boost gain, pressure response and damping and has been effectively shown through simulation and experiments. For position control, there is greater freedom to design the controller to fit the system. The pressure response can be made fast enough for this case and the time lag is much less critical.

  • 5.
    Dell’Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Pressure Control in Hydraulic Power Steering Systems2013Licentiate thesis, monograph (Other academic)
    Abstract [en]

    There is a clear trend in the vehicle industry to implement more safetyrelated functions, where the focus is on active safety systems and today the steering system is also involved. Steering-related active safety functions can only be realised with a steering system that allows electroniccontrol of either the road wheel angle or the torque required to steer the vehicle, called active steering. The high power requirement of heavy vehicles means they must rely on hydraulic power to assist the driver. Thesystem is a pure hydro-mechanical system with an open-centre circuit activated by the driver’s steering action and suffers from poor energy efficiency. The main task of the hydraulic system is to control the pressure in the assistance cylinder in such a way that it eases the load on the driver.

    This work suggests a way to design and evaluate a self-regulating pressure control valve for use as actuator in the steering system. This valve can be made small and fast and is electronically controlled to enable active steering. It is based on a closed-centre circuit and has therefore the potential to improve energy efficiency. The aim of this work has been to investigate the possibility for the valve to perform as the  original open-centre valve. The suggested approach is a model-based design and evaluation process where an optimisation routine is used to design the valve. Together with a validated model of the steering system, the new concept is compared with the original system. A hardware-inthe-loop simulation test rig has also been designed and built with the possibility to test a closed-centre steering system. It has partly been used to support the modelling process and partly to verify that a closedcentre steering system is a feasible solution. The simulation results  have shown that the designed valve can perform sufficiently well compared to the original system.

  • 6.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Carlsson, Marcus
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Norlin, Erik
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Sethson, Magnus
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Investigation of a Digital Hydraulic Actuation System on an Excavator Arm2013In: 13th Scandinavian International Conference on Fluid Power, Linköping University Electronic Press, 2013, p. 505-511Conference paper (Refereed)
    Abstract [en]

    Digital hydraulics is an ongoing trend that offers many interesting advantages and possibilities. Digital refers to that the system output is discrete, e.g. using an on/off valve with only discrete values or a finite amount of flow steps available. The advantages mentioned when compared to analogue systems are better performance, robust and fault tolerant, and amplitude independent bandwidth. On the other side noise and pressure pulsations must be handled, the physical size can be a problem, and the system requires complicated control. When considering control of linear motion, there are mainly two branches, controlling the flow with several parallel connected on/off valves, which generates discrete output flow values, or switching valves, which in theory can generate any mean output flow. The latter only requires one valve for each flow path but the demand for fast valves is very high, while the former requires many valves but avoids high frequent switching. With the introduction of a multi-chamber cylinder, secondary control is now also possible for linear motion. This paper is a first step in the investigation of the system applied to an excavator arm. The cylinder has four chambers, each with different area. Three pressure lines are used and a valve-pack of 27 on/off valves. The valve-pack connects the three pressure lines with each chamber generating 81 available force steps. The scope has been to start out with relative simple control of the velocity of the cylinder. To handle unnecessary switching of valves, different penalty strategies were tested. The results are promising where relatively smooth control could be achieved at the same time challenges with the system were identified. Next step is to investigate the force transients due to different capacitance in all four chambers as well as mode control for better accuracy. Energy potential compared to original system remains to investigate as well.

  • 7.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    A Test Rig for Hydraulic Power Steering System Concept Evaluation using Hardware-in-the-Loop Simulation2013In: ICFP 2013, 2013Conference paper (Refereed)
    Abstract [en]

    This paper derives a test rig of a power steering system with purpose to investigate the performance of closed-centre valves as actuators in the steering system loop using hardware-in-the-loop simulation. Servo valves are used for independent control of each chamber pressure. The approach is to use a static model of the reference actuator and control the pressures with the servo valves accordingly. A simulation model of the system is used to verify the approach. Results from the test rig are presented from on-centre driving which show how the pressure is controlled satisfyingly.

  • 8.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Closed-Centre Hydraulic Power Steering by Direct Pressure Control2014In: The 9th JFPS International Symposium on Fluid Power : Matsue 2014 : Oct. 28-31, 2014, The Japan Fluid Power System Society , 2014, p. 332-339Conference paper (Other academic)
    Abstract [en]

    An ongoing trend in the vehicle industry is the development of steering related active safety functions for increased road safety. For this to be a reality there must exist a steering system that allows to either change the road wheel angle or torque by means of an external signal, called active steering. Due to heavy vehicles’ high axle load, hydraulic power is needed to assist the driver in turning the wheels. This paper looks into a solution where self-regulated pressure control valves are used for electronic control of the assistance pressure in order to realise active steering. The valve has closed-centre for a high potential to reduce the energy consumption. A model based approach is used to analyse the system. A non-linear simulation environment is developed to compare the closed-centre system with the original system. A linear analysis is also performed to discover the influence of valve properties on steering system performance. Results have shown that a feasible solution exists and that there exists a relation between valve dynamics, boost gain and steering system loop stability.

  • 9.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Modeling, Simulation, and Experimental Investigation of an Electrohydraulic Closed-Center Power Steering System2015In: IEEE/ASME transactions on mechatronics, ISSN 1083-4435, E-ISSN 1941-014X, Vol. 20, no 5, p. 2452-2462Article in journal (Refereed)
    Abstract [en]

    In steering-related active safety systems, active steering is a key component. Active steering refers to the possibility to control the road wheel angle or the required torque to turn the wheels by means of an electronic signal. Due to the high axle loads in heavy vehicles, hydraulic power is needed to assist the driver in turning the wheels. One solution to realize active steering is, then, to use electronically controlled valves that are of closed-center type. This means that the assistance pressure, or force, can  be set to any feasible value and still benefit from the high power density of fluid power systems. A closed-center solution also implies that a significant reduction in fuel consumption is possible. This paper investigates such an electrohydraulic power steering system, and a comparison with the original system is also made. The findings have shown that while a high response of the pressure control loop is desired for a good steering feel, instability might occur at higher steering wheel torque levels. This has effectively been shown and explained by simulation and hardware-in-the-loop simulation, together with linear analysis. For any desired boost curve, the response of the pressure control loop must be designed to preserve stability over the entire working range.

  • 10.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Modelling and experimental validation of a nonlinear proportional solenoid pressure control valve2016In: International Journal of Fluid Power, ISSN 1439-9776, Vol. 17, no 2, p. 90-101Article in journal (Refereed)
    Abstract [en]

    This paper investigates the static and dynamic behaviour of a pressure control valve with nonlinear negative characteristics. The pressure control valve has both reducing and relieving capability and is actuated by a solenoid. The static characteristics have been measured over the entire working range, covering the dynamic response of the solenoid, as well as the complete valve. A model is proposed that considers the flow as a mix of laminar and turbulent flow and flow forces with a flow angle that varies with the stroke of the spool. The model shows good agreement with measurements. The investigations show that the flow forces decrease with higher flow rates as a result of a flow angle that tends to go towards a vertical angle. This results in an increase in pressure with flow during pressure reducing mode. A linear analysis is also presented, explaining this as a negative spring constant in the low frequency range. Stability is, however, maintained.

  • 11.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Pohl, Jochen
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Conceptual Evaluation of Closed-Centre Steering Gears in Road Vehicles2012In: Proceedings of the 7th FPNI PhD Symposium on Fluid Power, 2012 / [ed] Massimo Milani, Luca Montorsi, Fabrizio Paltrinieri, 2012, p. 433-452Conference paper (Refereed)
    Abstract [en]

    This paper is a study into the possibility to use a self-regulated pressure control valve as a way of realizing active steering into road vehicles by hydraulic means. From an actuator point of view, active steering refers to the possibility to control the assistance pressure via an external signal. From the steering system control loop, it is seen that the task of the steering system is to control the assistance pressure in each chamber of the assistance cylinder. A methodology is also derived for investigating the concept and finding a set of design parameters based on system requirements. This is based on a linear approach and later a simulation of the complete steering system with vehicle and driver. In order to assure good control accuracy during fast actuation of the valve a high gain is required. This would require an over damped valve with large proportions. This design was tested to verify the design methodology. A feasible design based on maximum available spool force was also tested. This design showed to large deviation in steering wheel torque compared to the original system.

  • 12.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Pohl, Jochen
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Modeling and Simulation for Requirement Generation of Heavy Vehicles Steering Gears2010In: Fluid Power and Motion Control (FPMC 2010) / [ed] D N Johnston and A R Plummer, Centre for Power Transmission and Motion Control , 2010, p. 475-490Conference paper (Refereed)
    Abstract [en]

    Today’s passenger vehicles are becoming more and more safe as more steering related active safety functions are being introduced. As an example, lane keeping assist functions or even electronic vehicle stability with steering intervention can be mentioned. However, the same trend can yet not be witnessed for heavy vehicles, which is, among others, due to a lesser degree of controllability of the steering system. While electric power assisted steering has been introduced in passenger cars in recent years on a broader basis, electric power assisted steering is yet not suitable for heavy vehicles due to heavier loads on the steering rack. Heavy vehicles thus lack a freely programmable steering system.The purpose of this paper is to generate and evaluate the requirements of future hydraulic actuation concepts for heavy vehicles, where emphasis is put on the required steering actuator linearity and bandwidth. Both actuator response and linearity are decisive for transmitting a proper steering feel to the driver. In this study we provide a structured approach to derive the required bandwidth as a function of the system sizing and provide a simulation supported method for deriving the requirements of linearity and accuracy.

  • 13.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Sethson, Magnus
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Palmberg, Jan-Ove
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Modeling, Simulation and Experimental Verification of a Solenoid Pressure Control Valve2009Conference paper (Refereed)
    Abstract [en]

    Simulation is a great tool to help the development of products. For simulation to be a validtool there are high demands on the models, where they need to be accurate and fast, regardingcomputational time.  This work is a first step to model and implement a 4 wheel drive system.The system is electronically controlled and the torque transferred by the system is dependenton the pressure built up by the hydraulic system. This work focuses primary on the develop-ment of the solenoid pressure control valve model. In order to perform simulations, the valvemodel needs to be connected to the rest of the system. The supply pressure is provided froma piston accumulator, that is implemented only to provide the right functionality at this stage.The load in this system is composed of a wet multiplate clutch, that is implemented only as astatic model based on measurements. The modeling of the valve was divided into studying theelectromagnetical part and hydromechanical part separately. The electromagnetical part, i.e.the solenoid, is modeled as a resistor in series with a nonlinear inductor. The electromagneticcharacteristics is modeled with the help of a curve fitting technique. A testbench was developedfor this purpose. The simulation results of the solenoid agrees well with measured results. Alinearized analysis of the hydromechanical part was performed in order to better understand thedynamics of the valve and see the most dominant effects. Two valve configurations resultedfrom this work. One includes more dynamics and has the possibility to change more param-eters in order to study different effects. The other configuration was based on the linearizedanalysis and therefore includes only the most dominant dynamics. This model is much fasterto simulate. Both configuration shows accurate results when compared to measurements of thesystem.

  • 14.
    Ericson, Liselott
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Dell' Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    MODELLING OF A SECONDARY CONTROLLED SIX-WHEEL PENDULUM ARM FORWARDER2015Conference paper (Refereed)
    Abstract [en]

    One of the major concerns in the forest industry is the impact on the soil caused by the forest machines during harvesting, where damage can have a negative impact on growth at replanting for example. Another concern is the working environment of the operator. Both these issues have a negative impact on productivity. A new six-wheel pendulum arm forwarder is being developed within a collaborative research project. The new forwarder aims to reduce soil damage by means of an even pressure distribution and smooth torque control. This paper presents the first step in the development of the driveline, where a secondary control approach is chosen for its ability to control the motion of each wheel individually. Simulation models of both vehicle and driveline have been constructed developed, partly for the development of the control strategy, and partly for evaluation. A speed control concept and a torque control concept have both been evaluated for different scenarios with regard to their ability to reduce wheel slip. Results have shown that a velocity control approach is more sensitive to kinematic model accuracy while wheel slip is handled automatically. A torque control approach is more robust towards model accuracy while the reduction of slip is dependent on an accurate model.

  • 15.
    Ericson, Liselott
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Eriksson, Björn
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Dell'Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    An Electric Hydraulic Hybrid Light Vehicle with Energy Recovery2011In: 52nd National Conference on Fluid Power, Las, 2011, p. 741-749Conference paper (Refereed)
    Abstract [en]

    A three wheeled electric hydraulic hybrid vehicle with tiltingbody was built and tested at Linköping University as a partof a student project. The goal of the student project wasto design and fabricate an environmentally friendly vehicleto enter the Formula ATA Electric & Hybrid Italy 2009 competition.The design of the vehicle was based on the rulesand requirements of the competition. The vehicle was alsoprepared for a hydraulic recovery system which was laterimplemented on the vehicle. Hydraulic motor/pump unitsare used to brake and recover energy and to provide additionalboost during acceleration. The energy recovery storageis hydraulic gas accumulators, while the primary propulsionsystem is electrical with Li-Fe batteries. Gas accumulatorshave very high power density superior to electricalbatteries.In this paper, the design of the hydraulic recovery system isdescribed along with simulation and experimental results.The concept shows high potential and the tests show a20 % recovery of the kinetic energy by the hydraulic systemfor a given cycle.

  • 16.
    Kärnell, Samuel
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Dell'Amico, Alessandro
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Simulation and validation of a wobble plate pumpwith a focus on check valve dynamics2018In: 2018 Global Fluid Power Society PhD Symposium (GFPS 2018): Samara, Russia 18-20 July 2018, 2018, article id 15Conference paper (Refereed)
    Abstract [en]

    Digital hydraulic piston pumps that use electrically controlled on/off valves to individually control the flow from each piston is a promising technique as these pumps are highly efficient at part displacement and respond quickly. However, digital pumps can still use check valves on the inlet, a fact that makes analysing wobble plate pumps (WPP) and their check valves interesting. Here, we measured the cylinder pressures of a WPP and compared these results with results from a simulation model we developed. In addition, we used linear analysis to investigate how different design parameters affect the valve’s behaviour. From the measurements we found that the cylinder pressure is clearly affected the flow from other pistons and also that the system is not as stiff as expected. From the linear analysis, a criterion of how to design the valve to avoid instability was derived.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf