liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Broberg Viklund, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction2014In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, p. 369-379Article in journal (Refereed)
    Abstract [en]

    Industrial excess heat is a large untapped resource, for which there is potential for external use, whichwould create benefits for industry and society. Use of excess heat can provide a way to reduce the useof primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present differentmeasures for the recovery and utilization of industrial excess heat and to investigate how the developmentof the future energy market can affect which heat utilization measure would contribute the mostto global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of theexcess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden.Two different cases for excess heat recovery are studied: heat delivery to a district heating system andheat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions,six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrialexcess heat in Gävleborg County is not used today. The results show that with the proposed recoverymeasures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be suppliedfrom this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzedscenarios, while heat delivery to a DH system based on combined heat and power production frombiomass would result in increased global CO2 emissions when the CO2 emission charge is low.

  • 2.
    Brunke, Jean-Christian
    et al.
    University of Stuttgart, Germany.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry2014In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 84, p. 509-525Article in journal (Refereed)
    Abstract [en]

    The Swedish iron and steel industry is focused on the production of advanced steel grades and accounts for about 5% of the countrys final energy consumption. Energy efficiency is according to the European Commission a key element for the transition towards a resource-efficient economy. We investigated four aspects that are associated with the adoption of cost-effective energy conservation measures: barriers, drivers, energy management practices and energy services. We used questionnaires and follow-up telephone interviews to collect data from members of the Swedish steel association. The heterogeneous observations implied a classification into steel producers and downstream actors. For testing the significance, the Mann Whitney U test was used. The most important barriers were internal economic and behavioural barriers. Energy service companies, in particular third-party financing, played a minor role. In contrast, high importance was attached to energy management as the most important drivers originated from within the company. Energy management practices showed that steel companies are actively engaged in the topic, but need to raise its prioritisation and awareness within the organisation. When sound energy management practices are included, the participants assessed the cost-effective energy conservation potential to be 9.7%, which was 2.4% higher than the potential for solely adopting cost-effective technologies.

  • 3.
    Haraldsson, Joakim
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries2019In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 7, article id 2043Article in journal (Refereed)
    Abstract [en]

    Industrial energy efficiency is important for reducing CO2 emissions and could be a competitive advantage for companies because it can reduce costs. However, cost-effective energy efficiency measures are not always implemented because there are barriers inhibiting their implementation. Drivers for energy efficiency could provide means for overcoming these barriers. The aim of this article was to study the importance of different barriers to and drivers for improved energy efficiency in the Swedish aluminium industry and foundries that cast aluminium. Additionally, the perceived usefulness of different information sources on energy efficiency measures was studied. The data were collected through a questionnaire covering 39 barriers and 48 drivers, divided into different categories. Both the aluminium and foundry industries considered technological and economic barriers as the most important categories. The most important category of drivers for the aluminium industry was organisational drivers, while the foundries rated economic drivers as the most important. Colleagues within the company, the company group and sector, and the trade organisation were considered the most useful information sources. Important factors for driving work with improved energy efficiency included access to knowledge within the company, having a culture within the company promoting energy efficiency, and networking within the sector. The policy implications identified included energy labelling of production equipment, the law on energy audit in large companies and subsidy for energy audits in small- and medium-sized companies, voluntary agreements that included long-term energy strategies, increased taxes to improve the cost-effectiveness of energy efficiency measures, and EUs Emission Trading System.

  • 4.
    Haraldsson, Joakim
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy Efficiency in the Supply Chains of the Aluminium Industry: The Cases of Five Products Made in Sweden2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 2, p. 245-Article in journal (Refereed)
    Abstract [en]

    Improved energy efficiency in supply chains can reduce both environmental impact and lifecycle costs, and thus becomes a competitive advantage in the work towards a sustainable global economy. Viewing the supply chain as a system provides the holistic perspective needed to avoid sub-optimal energy use. This article studies measures relating to technology and management that can increase energy efficiency in the supply chains of five aluminium products made in Sweden. Additionally, energy efficiency potentials related to the flows of material, energy, and knowledge between the actors in the supply chains are studied. Empirical data was collected using focus group interviews and one focus group per product was completed. The results show that there are several areas for potential energy efficiency improvement; for example, product design, communication and collaboration, transportation, and reduced material waste. Demands from other actors that can have direct or indirect effects on energy use in the supply chains were identified. Despite the fact that companies can save money through improved energy efficiency, demands from customers and the authorities would provide the additional incentives needed for companies to work harder to improve energy efficiency.

  • 5.
    Haraldsson, Joakim
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Impact analysis of energy efficiency measures in the electrolysis process in primary aluminium production2019In: WEENTECH Proceedings in Energy, 2019, Vol. 4(2), p. 177-184Conference paper (Refereed)
    Abstract [en]

    The Paris Agreement includes the goals of ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels’ and ‘making finance flows consistent with a pathway towards low greenhouse gas emissions’. Industrial energy efficiency will play an important role in meeting those goals as well as becoming a competitive advantage due to reduced costs for companies. The aluminium industry is energy intensive and uses fossil fuels both for energy purposes and as reaction material. Additionally, the aluminium industry uses significant amounts of electricity. The electrolysis process in the primary production of aluminium is the most energy- and carbon-intensive process within the aluminium industry. The aim of this paper is to study the effects on primary energy use, greenhouse gas emissions and costs when three energy efficiency measures are implemented in the electrolysis process. The effects on the primary energy use, greenhouse gas emissions and costs are calculated by multiplying the savings in final energy use by a primary energy factor, emissions factor and price of electricity, respectively. The results showed significant savings in primary energy demand, greenhouse gas emissions and cost from the implementation of the three measures. These results only indicate the size of the potential savings and a site-specific investigation needs to be conducted for each plant. This paper is a part of a research project conducted in close cooperation with the Swedish aluminium industry.

  • 6.
    Haraldsson, Joakim
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Review of measures for improved energy efficiency in production-related processes in the aluminium industry: From electrolysis to recycling2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 93, p. 525-548Article, review/survey (Refereed)
    Abstract [en]

    The aluminium industry is facing a challenge in meeting the goal of halved greenhouse gas emissions by 2050, while the demand for aluminium is estimated to increase 2–3 times by the same year. Energy efficiency will play an important part in achieving the goal. The paper’s aim was to investigate possible production-related energy efficiency measures in the aluminium industry. Mining of bauxite and production of alumina from bauxite are not included in the study. In total, 52 measures were identified through a literature review. Electrolysis in primary aluminium production, recycling and general measures constituted the majority of the 52 measures. This can be explained by the high energy intensity of electrolysis, the relatively wide applicability of the general measures and the fact that all aluminium passes through either electrolysis or recycling. Electrolysis shows a higher number of emerging/novel measures compared to the other processes, which can also be explained by its high energy intensity. Processing aluminium with extrusion, rolling, casting (shape-casting and casting of ingots, slabs and billets), heat treatment and anodising will also benefit from energy efficiency. However, these processes showed relatively fewer measures, which might be explained by the fact that to some extent, these processes are not as energy demanding compared, for example, to electrolysis. In many cases, the presented measures can be combined, which implies that the best practice should be to combine the measures. There may also be a future prospect of achieving carbon-neutral and coal-independent electrolysis. Secondary aluminium production will be increasingly important for meeting the increasing demand for aluminium with respect to environmental and economic concerns and strengthened competitiveness. Focusing on increased production capacity, recovery yields and energy efficiency in secondary production will be pivotal. Further research and development will be required for those measures designated as novel or emerging.

  • 7.
    Johansson, Daniella
    et al.
    Värmeteknik och maskinlära, Chalmers tekniska högskola, Göteborg.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karltorp, Kersti
    Miljösystemanalys ,Chalmers tekniska högskola, Göteborg.
    Ljungstedt, Hanna
    Värmeteknik och maskinlära, Chalmers tekniska högskola, Göteborg.
    Schwabecker, Julia
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Pathways for Increased Use and Refining of Biomass in Swedish Energy-intensive Industry: Changes in a socio-technical system2009Report (Other academic)
    Abstract [en]

    Events in recent decades have placed climate change at the top of the political agenda. The European Union has assumed a vanguard role in global climate negotiations, pushing for ambitious international commitments. Furthermore, Sweden is positioning itself as a leader within the EU when it comes to setting the agenda for climate change. In Sweden, energy-intensive industries are responsible for a large proportion of greenhouse gas emissions and their ability to switch to a renewable energy source could contribute significantly to the transition to a decarbonised economy.

     

    This study analyses the role of three energy-intensive industries with regard to increased refining and use of biomass and will also take a glimpse into the future in an attempt to gain further insight into what will affect future developments in this area. The study is limited to the pulp and paper industry, the iron and steel industry and the oil refining industry as well as the EU legislation that affects these industries. For each industry the operations of the following case companies, Södra, SSAB and Preem AB, are analysed specifically and for each company one or two selected plants exemplify the outcome of the implementation of different technologies. This interdisciplinary study combines a range of methods taken from engineering and social sciences.

     

    The industries studied all have different preconditions for transformations and the technological options available diverge to a large extent. There are many options for the pulp and paper industry compared to the iron and steel industry and the oil refining industry. The most likely technological option for this sector is to utilise internal resources for conversion to energy or material products and export of excess energy. Options for the steel producer SSAB include the substitution of part of the coke in the blast furnace with biomass or refined biomass products such as syngas and biomethane and forming an industrial symbiotic partnership. There are several options for the oil refining industry to substitute fossil feedstocks without the need to modify the existing infrastructure. One option is hydrotreatment of bio-oil into green diesel, which will be implemented at the Preem refinery in Gothenburg. However, green production of transportation fuels and substitution of coke in the blast furnace require large amounts of biomass and since biomass is a limited resource this is likely to act as a barrier to the development of these technologies.

     

    Furthermore, it can be concluded that the companies studied could contribute significantly to the development of technologies that are in line with their core capabilities, while the development of technological options that require a change in their core capabilities is more limited. This discovery is further supported by the finding that the EU directives relevant to this report do not push industrial operators beyond efficiency measures along established technological lines. On the one hand, these legislative instruments, which are designed in the spirit of ecological modernisation, encourage the most cost-effective technologies and processes for the abatement of greenhouse gases relevant to each industry. On the other, they do not appear to be sufficient to raise the cost of carbon emissions and this contributes to a situation where incentives to make different biomass-based technologies economic are not present on the market. Over a longer time perspective none of the case companies believes that biomass will have increased significantly in the Swedish energy system by 2050. These case companies claim that biomass is too limited a resource and can only contribute in part to the necessary substitution of fossil fuels.

  • 8.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Högskolan i Gävle.
    Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global COemissions2013In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 57, p. 699-708Article in journal (Refereed)
    Abstract [en]

    Climate change is of great concern for society today. Manufacturing industries and construction account for approximately 20% of global CO2 emissions and, consequently, it is important that this sector investigate options to reduce its CO2 emissions. One option could be to substitute fossil fuels with renewable alternatives. This paper describes a case study in which four future energy market scenarios predicting 2030 were used to analyse whether it would be profitable for a steel plant to produce bio-SNG (bio-synthetic natural gas) in a biomass gasifier and to substitute LPG (liquefied petroleum gas) with bio-SNG as fuel in reheating furnaces. The effects on global CO2 emissions were analysed from a perspective in which biomass is considered a limited resource. The results from the analysis show that investment in a biomass gasifier and fuel conversion would not be profitable in any of the scenarios. Depending on the scenario, the production cost for bio-SNG ranged between 22 and 36 EUR/GJ. Fuel substitution would reduce global CO2 emission if the marginal biomass user is a producer of transportation fuel. However, if the marginal user of biomass is a coal power plant with wood co-firing, the result would be increased global CO2 emissions

  • 9.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs.

    This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices.

    In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions.

    Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company.

    List of papers
    1. Options for the Swedish steel industry - Energy efficiency measures and fuel conversion
    Open this publication in new window or tab >>Options for the Swedish steel industry - Energy efficiency measures and fuel conversion
    2011 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 1, p. 191-198Article in journal (Refereed) Published
    Abstract [en]

    The processes of iron and steel making are energy intensive and consume large quantities of electricity and fossil fuels. In order to meet future climate targets and energy prices, the iron and steel industry has to improve its energy and resource efficiency. For the iron and steel industry to utilize its energy resources more efficiently and at the same time reduce its CO2 emissions a number of options are available. In this paper, opportunities for both integrated and scrap-based steel plants are presented and some of the options are electricity production, fuel conversion, methane reforming of coke oven gas and partnership in industrial symbiosis. The options are evaluated from a system perspective and more specific measures are reported for two Swedish case companies: SSAB Strip Products and Sandvik AB. The survey shows that both case companies have great potentials to reduce their CO2 emissions.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    Iron and steel industry, Energy efficiency, Fuel conversion, Industrial symbiosis, Excess energy, CO2 emissions
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-66142 (URN)10.1016/j.energy.2010.10.053 (DOI)000286781800021 ()
    Note

    Original Publication: Maria Johansson and Mats Söderström, Options for the Swedish steel industry - Energy efficiency measures and fuel conversion, 2011, ENERGY, (36), 1, 191-198. http://dx.doi.org/10.1016/j.energy.2010.10.053 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/

    Available from: 2011-03-04 Created: 2011-03-04 Last updated: 2017-12-11Bibliographically approved
    2. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
    Open this publication in new window or tab >>Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
    2014 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, p. 369-379Article in journal (Refereed) Published
    Abstract [en]

    Industrial excess heat is a large untapped resource, for which there is potential for external use, whichwould create benefits for industry and society. Use of excess heat can provide a way to reduce the useof primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present differentmeasures for the recovery and utilization of industrial excess heat and to investigate how the developmentof the future energy market can affect which heat utilization measure would contribute the mostto global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of theexcess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden.Two different cases for excess heat recovery are studied: heat delivery to a district heating system andheat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions,six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrialexcess heat in Gävleborg County is not used today. The results show that with the proposed recoverymeasures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be suppliedfrom this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzedscenarios, while heat delivery to a DH system based on combined heat and power production frombiomass would result in increased global CO2 emissions when the CO2 emission charge is low.

    Place, publisher, year, edition, pages
    Elsevier, 2014
    Keywords
    Industrial excess heat; Heat recovery; Electricity generation; District heating; CO2 emission; Energy market scenario
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-102611 (URN)10.1016/j.enconman.2013.09.052 (DOI)000330494600041 ()
    Funder
    Swedish Energy Agency
    Available from: 2013-12-17 Created: 2013-12-17 Last updated: 2017-12-06Bibliographically approved
    3. Electricity generation from low-temperature industrial excess heat—an opportunity for the steel industry
    Open this publication in new window or tab >>Electricity generation from low-temperature industrial excess heat—an opportunity for the steel industry
    2014 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 7, no 2, p. 203-215Article in journal (Refereed) Published
    Abstract [en]

    Awareness of climate change and the threat of rising energy prices have resulted in increased attention being paid to energy issues and industry seeing a cost benefit in using more energy-efficient production processes. One energy-efficient measure is the recovery of industrial excess heat. However, this option has not been fully investigated and some of the technologies for recovery of excess heat are not yet commercially available. This paper proposes three technologies for the generation of electricity from low-temperature industrial excess heat. The technologies are thermoelectric generation, organic Rankine cycle and phase change material engine system. The technologies are evaluated in relation to each other, with regard to temperature range of the heat source, conversion efficiency, capacity and economy. Because the technologies use heat of different temperature ranges, there is potential for concurrent implementation of two or more of these technologies. Even if the conversion efficiency of a technology is low, it could be worthwhile to utilise if there is no other use for the excess heat. The iron and steel industry is energy intensive and its production processes are often conducted at high temperatures. As a consequence, large amounts of excess heat are generated. The potential electricity production from low-temperature excess heat at a steel plant was calculated together with the corresponding reduction in global CO2 emissions.

    Place, publisher, year, edition, pages
    Springer Netherlands, 2014
    Keywords
    Low-temperature excess heat, Heat recovery, Electricity generation, Thermoelectric generator (TEG), Organic Rankine cycle (ORC), Phase change material (PCM) engine
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-94561 (URN)10.1007/s12053-013-9218-6 (DOI)000332789200003 ()
    Funder
    Swedish Energy Agency
    Available from: 2013-06-26 Created: 2013-06-26 Last updated: 2017-12-06
    4. Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects
    Open this publication in new window or tab >>Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects
    2011 (English)Conference paper, Published paper (Other academic)
    Abstract [en]

    Today, climate change is at the top of the political agenda. The European Commission has set atarget to reduce greenhouse gas emissions by 20 % by 2020, compared to 1990 levels. The steelindustry contributes significantly to industrial CO2 emissions, and thus it is important for thissector to find options to reduce its CO2 emissions. One alternative is to substitute fossil fuelswith biomass derived fuels; a promising option is to replace LPG (Liquefied Petroleum Gas) used asfuel in heating furnaces with bio-syngas produced through the gasification of biomass. This paperis a feasibility study of the implementation of this concept at a Swedish scrap-based steel plant.The results have been obtained through a case study approach with interviews and literaturesurveys. The study shows that if a fuel gas mixture of 50 vol% bio-syngas and 50 vol% LPG would beused, the global CO2 emissions would be reduced by 5,400 tonnes/year. Moreover, a full-scale fuelsubstitution would result in reduced emissions by 68,600 tonnes/year. In the case of a partial fuelsubstitution, a 4 MWth High Temperature Agent Gasifier (HTAG) is a suitable choice while a 45 MWthindirectly heated Circulating Fluidised Bed Gasifier (CFBG) would be suitable for a full-scale fuelsubstitution. In the case of a fuel switch, the lower heating value of syngas, compared to LPG, notonly implies that a different combustion technology must be used, but also that the exhaust gasflows will be substantially larger, and consequently the exhaust gas cleaning system must bedesigned with dimensions suitable for larger flows. Excess heat from the gasifier can be used forspace heating, but if the excess heat replaces district heating from a Combined Heat and Power(CHP) plant, the global CO2 emissionsreductions would be less than if the excess heat is not recovered.

    Keywords
    Fuel conversion, steel industry, biomass, case study, gasification
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-71824 (URN)
    Conference
    ECOS 2011 - 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, July 4-7, Novi Sad, Serbia
    Available from: 2011-11-07 Created: 2011-11-07 Last updated: 2016-05-04Bibliographically approved
    5. Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global COemissions
    Open this publication in new window or tab >>Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global COemissions
    2013 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 57, p. 699-708Article in journal (Refereed) Published
    Abstract [en]

    Climate change is of great concern for society today. Manufacturing industries and construction account for approximately 20% of global CO2 emissions and, consequently, it is important that this sector investigate options to reduce its CO2 emissions. One option could be to substitute fossil fuels with renewable alternatives. This paper describes a case study in which four future energy market scenarios predicting 2030 were used to analyse whether it would be profitable for a steel plant to produce bio-SNG (bio-synthetic natural gas) in a biomass gasifier and to substitute LPG (liquefied petroleum gas) with bio-SNG as fuel in reheating furnaces. The effects on global CO2 emissions were analysed from a perspective in which biomass is considered a limited resource. The results from the analysis show that investment in a biomass gasifier and fuel conversion would not be profitable in any of the scenarios. Depending on the scenario, the production cost for bio-SNG ranged between 22 and 36 EUR/GJ. Fuel substitution would reduce global CO2 emission if the marginal biomass user is a producer of transportation fuel. However, if the marginal user of biomass is a coal power plant with wood co-firing, the result would be increased global CO2 emissions

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    Biomass gasification, Steel industry, Case study, Fuel substitution, Bio-synthetic natural gas (bio-SNG), CO2 emissions
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-96677 (URN)10.1016/j.energy.2013.06.010 (DOI)000323355600073 ()
    Funder
    Swedish Energy Agency
    Available from: 2013-08-22 Created: 2013-08-22 Last updated: 2017-12-06Bibliographically approved
    6. Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking
    Open this publication in new window or tab >>Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking
    2015 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 4, p. 713-744Article in journal (Refereed) Published
    Abstract [en]

    The iron and steel industry is an energy-intensive industry that consumes a significant portion of fossil fuel and electricity production. Climate change, the threat of an unsecure energy supply, and rising energy prices have emphasized the issue of improved energy efficiency in the iron and steel industry. However, an energy efficiency gap is well recognised, i.e. cost efficient measures are not implemented in practice. This study will go deeper into why this gap occurs by investigating energy management practices at 11 iron and steel companies in Sweden. Energy managers at the steel plants were interviewed about how they perceived their own and their companies’ efforts to improve energy efficiency and how networking among energy managers influenced the efforts to improve energy efficiency. Reported barriers to improved energy efficiency were, for example, too long of a payback period, lack of profitability, lack of personnel, risk of production disruption, lack of time, and lack of commitment. Only three out of the eleven companies had assigned a person to work full time with energy management, and some of the energy managers were frustrated with not having enough time to work with energy issues. Generally, the respondents felt that they had support from senior management and that energy issues were prioritised, but only a few of the companies had made great efforts to involve employees in improving energy efficiency. Networking among Swedish steel companies was administered by the Swedish Steel Producers’ Association, and their networking meetings contributed to the exchange of knowledge and ideas. In conclusion, Swedish steel companies regard improved energy efficiency as important but have much work left to do in this area. For example, vast amounts of excess heat are not being recovered and more efforts could be put into engaging employees and introducing a culture of energy  efficiency.

    Place, publisher, year, edition, pages
    Springer Netherlands, 2015
    Keywords
    Energy efficiency, Energy management, Networking, Iron and steel industry, Interviews
    National Category
    Energy Engineering
    Identifiers
    urn:nbn:se:liu:diva-105873 (URN)10.1007/s12053-014-9317-z (DOI)000358046700006 ()
    Available from: 2014-04-11 Created: 2014-04-11 Last updated: 2017-12-05Bibliographically approved
  • 10.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Djuric Ilic, Danica
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Review of sustainable development of the road transport sector: Are there geographical differences?2018In: WEENTECH Proceedings in Energy 4 (2018) 67-87, WEENTECH Ltd. , 2018, Vol. 4, p. 67-87Conference paper (Refereed)
    Abstract [en]

    Even though the share of renewable energy in the transport sector has increased during the last decade, the sector is still highly dependent on fossil fuels. Consequences are for example emissions of greenhouse gases, particulates, carbon monoxide and nitrogen oxides. This is of great concern for the environment, climate change, and human health. This study reviews scientific publications about sustainable development of the road transport sector, published 2005-2018. The aim of the study is to investigate if there are differences in the measures and strategies presented in the publications depending on the geographical areas studied, and to analyse if there are differences depending on year of publication. The authors analysed to what extent local conditions influence the choice of proposed measures and strategies. A system perspective was applied in order to include measures related to the whole life cycle of the road transport, as well as other sectors, which influence or are influenced by the transport sector. A literature review was performed using the search-engine Web of Science. Results show that important local conditions that may influence the research focus within the area of sustainable development of the road transport sector are for example: energy supply security (e.g. availability of biomass and renewable electricity, as well as access to domestic fossil fuel resources), possibilities for developing infrastructure for biofuel supply and charging of electric vehicles, political priorities and approaches, and traditions.

  • 11.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Haraldsson, Joakim
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy efficient supply chain of an aluminium product in Sweden – What can be done in-house and between the companies?2018In: eceee 2018 Industrial Summer Study proceedings / [ed] Therese Laitinen Lindström, Ylva Blume & Nina Hampus, Stockholm, Sweden: European Council for an Energy Efficient Economy (ECEEE), 2018, p. 369-377Conference paper (Refereed)
    Abstract [en]

    According to the Energy Efficiency Directive executed by the European Union, each member state is obliged to set a national target on energy efficiency. This requirement constitutes the basis for governments to formulate policy measures directed towards industrial companies. Such policy measures, along with the demand for cost-effective production to remain competitive on the market, motivates industrial companies to improve their energy efficiency. The aluminium industry is energy intensive and consumes substantial amounts of electricity and fossil fuels, resulting in both direct and indirect greenhouse gas emissions. This paper presents a study of the production of an aluminium product in Sweden in terms of implemented energy efficiency measures in the supply chain and potential areas for further improvement. Most previous studies have focused on energy efficiency measures in individual companies (value chains). However, this paper presents and analyses energy efficiency measures not only in each individual company but also in the entire supply chain of the product. The supply chain studied starts with secondary aluminium production followed by the production of a part of an automobile motor and ends with installing the motor detail in a car. Empirical data were gathered through a questionnaire and a focus group. The study shows the great potential for further energy efficiency improvements in the value chains of each individual company and in the whole supply chain. The work shown here is a part of a larger research project performed in close cooperation with the Swedish aluminium industry.

  • 12.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Bio-SNG as fuel in steel industry heating furnaces: integration of a biomass gasifier with a steel plant2012In: Asia Steel International Conference 2012, 2012Conference paper (Other academic)
    Abstract [en]

    Climate change, as a result of anthropogenic greenhouse gas (GHG) emissions, is of great concern for society today. Industry accounts for almost 40% of global CO2 emissions and consequently it is important that this sector investigate options to reduce its CO2 emissions. In this paper, an economic evaluation of integration of a biomass gasifier with a steel plant is performed. Synthetic natural gas (bio-SNG) from the gasifier substitutes liquefied petroleum gas as fuel in the steel plant’s heating furnaces. Eight future market scenarios are used to analyse investment opportunities to integrate production of bio-SNG with a case study steel plant. Results from the analysis show that high fossil fuel prices could make integration of a biomass gasifier and fuel conversion profitable. Moreover, profitability is highly dependent on biomass price. At current price levels, production cost for bio-SNG is 82 EUR/MWh.

  • 13.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Linköping University, Biogas Research Center.
    Lindkvist, Emma
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Linköping University, Biogas Research Center.
    Rosenqvist, Jakob
    Tranås Energi, Sweden.
    Methodology for Analysing Energy Demand in Biogas Production Plants: A Comparative Study of Two Biogas Plants2017In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 11, article id 1822Article in journal (Refereed)
    Abstract [en]

    Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1) sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning), (2) unit processes (e.g., heating, mixing, pumping, lighting) and (3) a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  • 14.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects2011Conference paper (Other academic)
    Abstract [en]

    Today, climate change is at the top of the political agenda. The European Commission has set atarget to reduce greenhouse gas emissions by 20 % by 2020, compared to 1990 levels. The steelindustry contributes significantly to industrial CO2 emissions, and thus it is important for thissector to find options to reduce its CO2 emissions. One alternative is to substitute fossil fuelswith biomass derived fuels; a promising option is to replace LPG (Liquefied Petroleum Gas) used asfuel in heating furnaces with bio-syngas produced through the gasification of biomass. This paperis a feasibility study of the implementation of this concept at a Swedish scrap-based steel plant.The results have been obtained through a case study approach with interviews and literaturesurveys. The study shows that if a fuel gas mixture of 50 vol% bio-syngas and 50 vol% LPG would beused, the global CO2 emissions would be reduced by 5,400 tonnes/year. Moreover, a full-scale fuelsubstitution would result in reduced emissions by 68,600 tonnes/year. In the case of a partial fuelsubstitution, a 4 MWth High Temperature Agent Gasifier (HTAG) is a suitable choice while a 45 MWthindirectly heated Circulating Fluidised Bed Gasifier (CFBG) would be suitable for a full-scale fuelsubstitution. In the case of a fuel switch, the lower heating value of syngas, compared to LPG, notonly implies that a different combustion technology must be used, but also that the exhaust gasflows will be substantially larger, and consequently the exhaust gas cleaning system must bedesigned with dimensions suitable for larger flows. Excess heat from the gasifier can be used forspace heating, but if the excess heat replaces district heating from a Combined Heat and Power(CHP) plant, the global CO2 emissionsreductions would be less than if the excess heat is not recovered.

  • 15.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Electricity generation from low-temperature industrial excess heat—an opportunity for the steel industry2014In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 7, no 2, p. 203-215Article in journal (Refereed)
    Abstract [en]

    Awareness of climate change and the threat of rising energy prices have resulted in increased attention being paid to energy issues and industry seeing a cost benefit in using more energy-efficient production processes. One energy-efficient measure is the recovery of industrial excess heat. However, this option has not been fully investigated and some of the technologies for recovery of excess heat are not yet commercially available. This paper proposes three technologies for the generation of electricity from low-temperature industrial excess heat. The technologies are thermoelectric generation, organic Rankine cycle and phase change material engine system. The technologies are evaluated in relation to each other, with regard to temperature range of the heat source, conversion efficiency, capacity and economy. Because the technologies use heat of different temperature ranges, there is potential for concurrent implementation of two or more of these technologies. Even if the conversion efficiency of a technology is low, it could be worthwhile to utilise if there is no other use for the excess heat. The iron and steel industry is energy intensive and its production processes are often conducted at high temperatures. As a consequence, large amounts of excess heat are generated. The potential electricity production from low-temperature excess heat at a steel plant was calculated together with the corresponding reduction in global CO2 emissions.

  • 16.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Options for the Swedish steel industry - Energy efficiency measures and fuel conversion2011In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 1, p. 191-198Article in journal (Refereed)
    Abstract [en]

    The processes of iron and steel making are energy intensive and consume large quantities of electricity and fossil fuels. In order to meet future climate targets and energy prices, the iron and steel industry has to improve its energy and resource efficiency. For the iron and steel industry to utilize its energy resources more efficiently and at the same time reduce its CO2 emissions a number of options are available. In this paper, opportunities for both integrated and scrap-based steel plants are presented and some of the options are electricity production, fuel conversion, methane reforming of coke oven gas and partnership in industrial symbiosis. The options are evaluated from a system perspective and more specific measures are reported for two Swedish case companies: SSAB Strip Products and Sandvik AB. The survey shows that both case companies have great potentials to reduce their CO2 emissions.

  • 17.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Ökad energieffektivitet i aluminiumindustrins värdekedjor2015In: Aluminium Scandinavia, ISSN 0282-2628, Vol. 32, no 5, p. 1Article in journal (Other academic)
    Abstract [sv]

    Det övergripande syftet är att undersöka energieffektiviseringspotentialerna och möjligheterna att realisera dessa i hela värdekedjan (från metallframställning till återvinning) i aluminiumindustrin. Branschen använder årligen ca 3 TWh och delar av den är mycket energiintensiv, 30-40% av kostnaderna för produktion av primäralúminium är energi.

  • 18.
    Johansson, Maria T.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Effects on global CO2 emissions when substituting LPG with bio-SNG as fuel in steel industry reheating furnaces: The impact of different perspectives on CO2 assessment2016In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 9, no 6, p. 1437-1445Article in journal (Refereed)
    Abstract [en]

    The iron and steel industry is the second largest user of energy in the world industrial sector and is currently highly dependent on fossil fuels and electricity. Substituting fossil fuels with renewable energy in the iron and steel industry would make an important contribution to the efforts to reduce emissions of CO2. However, different approaches to assessing CO2 emissions from biomass and electricity use generate different results when evaluating how fuel substitution would affect global CO2 emissions. This study analyses the effects on global CO2 emissions when substituting liquefied petroleum gas with synthetic natural gas, produced through gasification of wood fuel, as a fuel in reheating furnaces at a scrap-based steel plant. The study shows that the choice of system perspective has a large impact on the results. When wood fuel is considered available for all potential users, a fuel switch would result in reduced global CO2 emissions. However, applying a perspective where wood fuel is seen as a limited resource and alternative use of wood fuel is considered, a fuel switch could in some cases result in increased global CO2 emissions. As an example, in one of the scenarios studied, a fuel switch would reduce global CO2 emissions by 52 ktonnes/year if wood fuel is considered available for all potential users, while seeing wood fuel as a limited resource implies, in the same scenario, increased CO2 emissions by 70 ktonnes/year. The choice of method for assessing electricity use also affects the results.

  • 19.
    Johansson, Maria T.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking2015In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 4, p. 713-744Article in journal (Refereed)
    Abstract [en]

    The iron and steel industry is an energy-intensive industry that consumes a significant portion of fossil fuel and electricity production. Climate change, the threat of an unsecure energy supply, and rising energy prices have emphasized the issue of improved energy efficiency in the iron and steel industry. However, an energy efficiency gap is well recognised, i.e. cost efficient measures are not implemented in practice. This study will go deeper into why this gap occurs by investigating energy management practices at 11 iron and steel companies in Sweden. Energy managers at the steel plants were interviewed about how they perceived their own and their companies’ efforts to improve energy efficiency and how networking among energy managers influenced the efforts to improve energy efficiency. Reported barriers to improved energy efficiency were, for example, too long of a payback period, lack of profitability, lack of personnel, risk of production disruption, lack of time, and lack of commitment. Only three out of the eleven companies had assigned a person to work full time with energy management, and some of the energy managers were frustrated with not having enough time to work with energy issues. Generally, the respondents felt that they had support from senior management and that energy issues were prioritised, but only a few of the companies had made great efforts to involve employees in improving energy efficiency. Networking among Swedish steel companies was administered by the Swedish Steel Producers’ Association, and their networking meetings contributed to the exchange of knowledge and ideas. In conclusion, Swedish steel companies regard improved energy efficiency as important but have much work left to do in this area. For example, vast amounts of excess heat are not being recovered and more efforts could be put into engaging employees and introducing a culture of energy  efficiency.

  • 20.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    A review of barriers to and driving forces for improved energy efficiency in Swedish industry: Recommendations for successful in-house energy management2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 82, no Part 1, p. 618-628Article, review/survey (Refereed)
    Abstract [en]

    From an environmental point of view, reduced use of energy remains a cornerstone in global greenhouse gas mitigation. However, without full internalization of external costs, greenhouse gas mitigation as such may not be highly prioritized among business leaders. Rather, it is the magnitude of production costs and ultimately the size of market revenue that articulates success or failure for business leaders. Nevertheless, reduced energy use or improved energy efficiency can have a vast impact on profitability even for companies with low energy costs, as the reduced energy costs directly lead to increased profits. In this paper, a review of ten years of empirical research in the field of industrial energy management in Swedish industry is presented. Based on the review, the paper proposes success factors for efficient energy management, factors which could help guide individual energy managers as well as policy makers in order to close the energy efficiency and management gaps. The paper also presents an overview of important industrial energy management tools, which would facilitate in-house energy management in industry.

  • 21.
    Ljungstedt, Hanna
    et al.
    Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden.
    Johansson, Daniella
    Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karltorp, Kersti
    Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden.
    Options for increased use and refining of biomass: the case of energy-intensive industry in Sweden2011In: Proceedings of the World Renewable Energy Congress 2011, May 8–13, Linköping, Sweden, Linköping: Linköping University Electronic Press , 2011, p. 17-24Conference paper (Refereed)
    Abstract [en]

    Events in recent decades have placed climate change at the top of the political agenda. In Sweden,energy-intensive industries are responsible for a large proportion of greenhouse gas emissions and their ability toswitch to renewable energy sources could contribute to the transition to a decarbonised economy. Thisinterdisciplinary study has its starting point in three energy-intensive industries’ opportunities to take part in thedevelopment towards increased refining and use of biomass. The study includes the pulp and paper industry, theiron and steel industry and the oil refining industry, each exemplified by a case company. It can be concludedthat there are several technological options in each industry. On the other hand, implementing one option forincreased use of biomass in each case company could demand up to 34% of the estimated increase in Swedishbiomass supply, in 2020. Additionally, in a longer time perspective none of the case companies believes that theamount of biomass in the Swedish industrial energy system have the possibility to increase significantly in the future.

  • 22.
    Sannö, Anna
    et al.
    School of Science and Technology, Örebro University, Örebro, Sweden.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Wollin, Johan
    Volvo Construction Equipment, Gothenburg, Sweden.
    Sjögren, Birgitta
    IVL, Swedish Environmental Institute, Gothenburg, Sweden.
    Approaching Sustainable Energy Management Operations in a Multinational Industrial Corporation2019In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 3, article id 754Article in journal (Refereed)
    Abstract [en]

    A large share of the energy efficiency improvement measures available for industrial companies remains unadopted due to the existence of various barriers to energy efficiency. One of the main means of overcoming barriers to energy efficiency is via energy management operations. The major parts of the published scientific papers have covered energy management on a company level or on a sector level. However, so far, the literature is scarce regarding empirical studies on energy management on a corporate level. With the aim of filling the research gap, the aim of this paper is to empirically assess the performance of an in-house energy management program adoption from the year of initiation and four years ahead in the multinational company Volvo CE. The paper was conducted as a case study including a participative approach, which has not previously been done in energy management research. This paper adds value, through complementing the existing literature on energy management on a factory or sector level, by highlighting the importance of leadership, speed of execution, and cultural transformation on a corporate level.

  • 23.
    Söderström, Mats
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Haraldsson, Joakim
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Samarbete för energieffektivitet2017In: Aluminium Scandinavia, ISSN 0282-2628, Vol. 34, no 3, p. 26-27Article in journal (Other (popular science, discussion, etc.))
  • 24.
    Thollander, Patrik
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Maria, Johansson
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy management in industry - success factors and way forward2015Conference paper (Refereed)
    Abstract [en]

    From an environmental point of view, reduced use of energy remains a cornerstone in global greenhouse gas mitigation. From a company point of view, greenhouse gas mitigation as such, may not yet, without full internalization of external costs, be the top priority among business leaders. Rather, it is the magnitude of production costs and the size of market revenue that articulates success or failure for business leaders. However, even for companies with low energy costs, reduced energy use or improved energy efficiency, can have a vast impact on profitability, as the reduced energy costs directly leads to increased profits. Naturally, this holds even more so for energy-intensive companies with high shares of energy costs and those companies have also often worked more extensively with improved energy efficiency. In this paper, a review of more than 10 years of empirical research in the field of industrial energy management is presented, followed by a short overview of important energy management tools. Results show that even for energy-intensive companies, energy management for most companies still has a large potential, calling for business leaders to take action, and for future policies to be designed to close this energy management gap.

1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf