liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andersson, Mattias
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Hsu, Yu-Te
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Hälsouniversitetet.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Sieval, Alexander B
    Solenne BV, Groningen, The Netherlands.
    Andersson, Mats R.
    Chalmers University of Technology, Göteborg, Sweden.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Mixed C60/C70 based fullerene acceptors in polymer bulk-heterojunction solar cells2012Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 13, nr 12, s. 2856-2864Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Different mixtures of identically substituted C60 and C70 based fullerens have been used as acceptors in three polymer: fullerene systems that strongly express various performance limiting aspects of bulk heterojunction solar cells. Results are correlated with, and discussed in terms of e.g. morphology, charge separation, and charge transport. In these systems, there appears to be no relevant differences in either mobility or energy level positions between the identically substituted C60 and C70 based fullerenes tested. Examples of how fullerene mixtures influence the nano-morphology of the active layer are given. An upper limit to the open circuit voltage that can be obtained with fullerenes is also suggested.

  • 2.
    Ma, Zaifei
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Sun, Wenjun
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, Göteborg, Sweden.
    Himmelberger, Scott
    Department of Material Science and Engineering, Stanford University, USA.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tang, Zheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Salleo, Alberto
    Department of Material Science and Engineering, Stanford University, USA.
    Wenzel Andreasen, Jens
    Imaging and Structural Analysis Programme, Department of Energy Conversion and Storage, Technical University of Denmark, Denmark.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, Sweden.
    Müller, Christian
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, Sweden.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Wang, Ergang
    Chalmers, Sweden .
    Structure-Property Relationships of Oligothiophene-Isoindigo Polymers for Efficient Bulk-Heterojunction Solar Cells2014Ingår i: energy and environmental science, ISSN 1754-5692, Vol. 17, nr 1, s. 361-369Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both, polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of favorable morphology and optimal interface energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work is a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Ma, Zaifei
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mats R
    Chalmers.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor2011Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 14, s. 143302-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Superior absorption of PC(71)BM in visible region to that of PC(61)BM makes PC(71)BM a predominant acceptor for most high efficient polymer solar cells (PSCs). However, we will demonstrate that power conversion efficiencies (PCEs) of PSCs based on poly[N,N-bis(2-hexyldecyl)isoindigo-6, 6-diyl-alt-thiophene-2,5-diyl] (PTI-1) with PC(61)BM as acceptor are 50% higher than their PC71BM counterparts under illumination of AM1.5G. AFM images reveal different topographies of the blends between PTI-1:PC(61)BM and PTI-1:PC(71)BM, which suggests that acceptors miscibility plays a more important role than absorption. The photocurrent of 9.1 mA/cm(2) is among the highest value in PSCs with a driving force for exciton dissociation less than 0.2 eV.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Muller, Christian
    et al.
    Esfera UAB.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Anselmo, Ana Sofia
    Karlstads University.
    Magnusson, Roger
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad optik.
    Alonso, M .Isabel
    Esfera UAB.
    Moons, Ellen
    Karlstads University.
    Arwin, Hans
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad optik. Linköpings universitet, Tekniska högskolan.
    Campoy-Quiles, Mariano
    Esfera UAB.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends: thermal stability and miscibility2011Ingår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 21, nr 29, s. 10676-10684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The thermal behaviour of an organic photovoltaic (OPV) binary system comprised of a liquid-crystalline fluorene-based polymer and a fullerene derivative is investigated. We employ variable-temperature ellipsometry complemented by photo-and electroluminescence spectroscopy as well as optical microscopy and scanning force nanoscopy to explore phase transitions of blend thin films. The high glass transition temperature correlates with the good thermal stability of solar cells based on these materials. Furthermore, we observe partial miscibility of the donor and acceptor together with the tendency of excess fullerene derivative to segregate into exceedingly large domains. Thus, for charge generation less adequate bulk-heterojunction nanostructures are poised to develop if this mixture is exposed to more elevated temperatures. Gratifyingly, the solubility of the fullerene derivative in the polymer phase is found to decrease if a higher molecular-weight polymer fraction is employed, which offers routes towards improving the photovoltaic performance of non-crystalline OPV blends.

  • 5.
    Tang, Zheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    George, Zandra
    Chalmers University of Technology.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Heriksson, Patrik
    Chalmers University of Technology.
    Kroon, Renee
    Chalmers University of Technology.
    Andersson, Mats
    Chalmers University of Technology.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Interlayer for Modified Cathode in Highly Efficient Inverted ITO-Free Organic Solar Cells2012Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 24, nr 4, s. 554-558Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inverted polymer solar cells with a bottom metal cathode modified by a conjugated polymer interlayer show considerable improvement of photocurrent and fill factor, which is due to hole blocking at the interlayer, and a modified surface energy which affects the nanostructure in the TQ1/[70]PCBM blend.

  • 6.
    Tang, Zheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    George, Zandra
    Chalmers, Sweden .
    Ma, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers, Sweden .
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R
    Chalmers, Sweden .
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency2012Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 2, nr 12, s. 1467-1476Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semi-transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA-1 modified ITO coated glass substrate as the ohmic electron-collecting cathode and PEDOT:PSS PH1000 as the hole-collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (similar to 90%) and high transmittance (similar to 50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub-cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.

  • 7.
    Tvingstedt, Kristofer
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar Cells: A Luminescence Quenching Study2010Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, nr 49, s. 21824-21832Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The field dependence of photocurrent found in many organic solar cells is a significant and detrimental setback for internal quantum efficiency. In this work we study the important contribution to this field dependence due to the dissociation efficiency of the weakly bound interfacial charge transfer (CT) state, crucial for organic bulk heterojunction solar cells. Three different donor polymers and two different acceptors are examined, and their respective dissociation characteristics are evaluated by photoluminescence (PL) quenching, both for Frenkel excitons and for the intermolecular charge transfer excitons. We observe that while the field-dependent photocurrent for pure polymers does correlate well with quenching efficiency, the CT exciton quenching from the blend generally displays a less pronounced correlation with extracted photocurrent. We further note that while the electroluminescence and photoluminescence of the pure polymer are identical, we observe a red shift for the blend electroluminescence. This indicates that lower energetic states, not visible in PL, are available in the blend. The emissive state of the blends probed by PL is therefore proposed to originate from sites that are involved in photocurrent generation to a lesser extent.

  • 8.
    Vandewal, Koen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ma, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Tang, Zheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Wang, Ergang
    Chalmers, Sweden .
    Henriksson, Patrik
    Chalmers, Sweden .
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R
    Chalmers, Sweden .
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open-Circuit Voltage2012Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 22, nr 16, s. 3480-3490Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In organic solar cells based on polymer:fullerene blends, energy is lost due to electron transfer from polymer to fullerene. Minimizing the difference between the energy of the polymer exciton (ED*) and the energy of the charge transfer state (ECT) will optimize the open-circuit voltage (Voc). In this work, this energy loss ED*-ECT is measured directly via Fourier-transform photocurrent spectroscopy and electroluminescence measurements. Polymer:fullerene photovoltaic devices comprising two different isoindigo containing polymers: P3TI and PTI-1, are studied. Even though the chemical structures and the optical gaps of P3TI and PTI-1 are similar (1.4 eV1.5 eV), the optimized photovoltaic devices show large differences in Voc and internal quantum efficiency (IQE). For P3TI:PC71BM blends a ED*-ECT of similar to 0.1 eV, a Voc of 0.7 V and an IQE of 87% are found. For PTI-1:PC61BM blends an absence of sub-gap charge transfer absorption and emission bands is found, indicating almost no energy loss in the electron transfer step. Hence a higher Voc of 0.92 V, but low IQE of 45% is obtained. Morphological studies and field dependent photoluminescence quenching indicate that the lower IQE for the PTI-1 system is not due to a too coarse morphology, but is related to interfacial energetics. Losses between ECT and qVoc due to radiative and non-radiative recombination are quantified for both material systems, indicating that for the PTI-1:PC61BM material system, Voc can only be increased by decreasing the non-radiative recombination pathways. This work demonstrates the possibility of obtaining modestly high IQE values for material systems with a small energy offset (andlt;0.1 eV) and a high Voc.

  • 9.
    Vandewal, Koen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Charge Transfer States in Organic Donor-Acceptor Solar Cells2011Ingår i: Semiconductors and semimetals, ISSN 0080-8784, Vol. 85, s. 261-295Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For an efficient conversion of photons to electrons by organic materials used for photovoltaic applications, the presence of a material interface between an electron-donating and electron-accepting material is crucial. This chapter deals with the interfacial charge transfer states formed at such interfaces under solar illumination. Absorption of long-wavelength light, with energy lower than the optical gap of both donor and acceptor results in the direct formation of these charge transfer states. Decay of CT states to the ground state will result in weak light emission. Both CT absorption and emission will be linked to photovoltaic performance. The role of the CT state in determining the open-circuit voltage is discussed in detail. We will also elaborate on the efficiency of dissociation and photocurrent generation from thermally relaxed CT states. Based on thermodynamical considerations and in the absence of nonradiative recombination, upper limits for the efficiency of organic solar cells based on donor–acceptor interfaces are derived and possible improvements and future research directions are indicated.

  • 10.
    Vandewal, Koen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tvingstedt, Kristofer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Polarization anisotropy of charge transfer absorption and emission of aligned polymer: fullerene blend films2012Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, nr 3, s. 035212-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An improved understanding of the electronic structure of interfacial charge transfer (CT) states is of importance due to their crucial role in charge carrier generation and recombination in organic donor-acceptor (DA) solar cells. DA combinations with a small difference between the energy of the CT state (E-CT) and energy of the donor exciton (E-D*) are of special interest since energy losses due to electron transfer are minimized, resulting in an optimized open-circuit voltage. In that case, the CT state can be considered as a resonance mixture, containing character of a fully ionic state (D+ A(-)) and of the local polymer excited state (D* A). We show that the D* A contribution to the overall CT state wave function can be determined by measurements of the polarization anisotropy of CT absorption and emission of polymer: fullerene blends with aligned polymer chains. We study two donor polymers, P3HT and TQ1, blended with fullerene acceptors with different ionization potentials, allowing variation of the E-D* -E-CT difference. We find that, upon decreasing E-D* -E-CT, the local excitonic D* A character of the CT state increases, resulting in a decreased fraction of charge transferred and an increased transition dipole moment. For typical polymer: fullerene systems, this effect is expected to become detrimental for device performance if E-D* - E-CT andlt; 0.1 eV. This however, depends on the electronic coupling between D* A and D+ A(-), which we experimentally estimate to be similar to 6 meV for the TQ1: PCBM system.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Wang, Ergang
    et al.
    Chalmers, Sweden .
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ma, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Hou, Lintao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Lundin, Angelica
    Chalmers, Sweden .
    Himmelberger, Scott
    Stanford University, CA USA .
    Salleo, Alberto
    Stanford University, CA USA .
    Muller, Christian
    Chalmers, Sweden .
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R.
    Chalmers, Sweden .
    Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene-Quinoxaline Copolymer2013Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 3, nr 6, s. 806-814Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The side-chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy-phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side-chain segment at the meta- instead of the para-position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high-performance TQ polymers that do not aggregate in solution. The use of branched meta-(2-ethylhexyl)oxy-phenyl side-chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta-alkyloxy-phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge-transfer state energy that is observed for bulk-heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open-circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short-circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.

  • 12.
    Wang, Ergang
    et al.
    Chalmers.
    Ma, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Zhen
    Chalmers.
    Vandewal, Koen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Henriksson, Patrik
    Chalmers.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R
    Chalmers.
    An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells2011Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, nr 36, s. 14244-14247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new, low-band-gap alternating copolymer consisting of terthiophene and isoindigo has been designed and synthesized. Solar cells based on this polymer and PC(71)BM show a power conversion efficiency of 6.3%, which is a record for polymer solar cells based on a polymer with an optical band gap below 1.5 eV. This work demonstrates the great potential of isoindigo moieties as electron-deficient units for building donor-acceptor-type polymers for high-performance polymer solar cells.

1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf