liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arja, Katriann
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology. Linköping, .
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Protein Science. Linköping University, Faculty of Science & Engineering. Linköping, .
    Åslund, Alma
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Prokop, Stefan
    Charite, Germany .
    Heppner, Frank L.
    Charite, Germany .
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Lindgren, Mikael
    Norwegian University of Science and Technology, Norway .
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Protein Science. Linköping University, Faculty of Science & Engineering. Linköping, .
    Åslund, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand2013In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 34, no 9, p. 723-730Article in journal (Refereed)
    Abstract [en]

    Fluorescent probes identifying protein aggregates are of great interest, as deposition of aggregated proteins is associated with many devastating diseases. Here, we report that a fluorescent amyloid ligand composed of two distinct molecular moieties, an amyloidophilic pentameric oligothiophene and a porphyrin, can be utilized for spectral and lifetime imaging assessment of recombinant A 1-42 amyloid fibrils and A deposits in brain tissue sections from a transgenic mouse model with Alzheimers disease pathology. The enhanced spectral range and distinct lifetime diversity of this novel oligothiopheneporphyrin-based ligand allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye.

  • 2.
    Babu Moparthi, Satish
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Marseille, France.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Villebeck, Laila
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    Jonsson, Bengt-Harald
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Carlsson, Uno
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Transient conformational remodeling of folding proteins by GroES - Individually and in concert with GroEL2014In: Journal of chemical biology, ISSN 1864-6158, E-ISSN 1864-6166, Vol. 7, no 1, p. 1-15Article, review/survey (Refereed)
    Abstract [en]

    The commonly accepted dogma of the bacterial GroE chaperonin system entails protein folding mediated by cycles of several ATP-dependent sequential steps where GroEL interacts with the folding client protein. In contrast, we herein report GroES-mediated dynamic remodeling (expansion and compression) of two different protein substrates during folding: the endogenous substrate MreB and carbonic anhydrase (HCAII), a well-characterized protein folding model. GroES was also found to influence GroEL binding induced unfolding and compression of the client protein underlining the synergistic activity of both chaperonins, even in the absence of ATP. This previously unidentified activity by GroES should have important implications for understanding the chaperonin mechanism and cellular stress response. Our findings necessitate a revision of the GroEL/ES mechanism.

  • 3.
    Magnusson, Karin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Simon, Rozalyn
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Sigurdson, Christina J.
    Department of Pathology, Unversity of California, San Diego, USA.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Nilsson, Peter R
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Multimodal fluorescene microscopy of prion strain specific PrP deposits stained by thiophene-bassed amyloid ligands2014In: Prion, ISSN 1933-6896, E-ISSN 1933-690X, Vol. 8, no 4, p. 319-329Article in journal (Refereed)
    Abstract [en]

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.

  • 4.
    Mishra, Rajesh
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biochemistry. Linköping University, The Institute of Technology.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Protein Science. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biochemistry. Linköping University, The Institute of Technology.
    Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red2011In: MOLECULAR BIOSYSTEMS, ISSN 1742-206X, Vol. 7, no 4, p. 1232-1240Article in journal (Refereed)
    Abstract [en]

    The fluorescence of Nile red (9-diethylamino-5H-benzophenoxazine-5-one) is quenched in aqueous solutions but shows augmented fluorescence in hydrophobic environments. Nile red fluorescence was blue shifted and strongly augmented in the presence of various amyloid fibrils assayed under acidic as well as neutral pH conditions. Fibrils grown from lysozyme and insulin (at pH 1.6 and 65 degrees C), transthyretin (TTR) fibrils grown from the acid unfolded monomer (pH 2.0, 21 degrees C) or from the dissociated tetramer starting from native protein under less acidic conditions (pH 4.4, 37 degrees C) were detected. Nile red was also successfully employed in detecting A beta 1-42 and human prion protein (PrP90-231) amyloid fibrils grown at neutral pH. Nile red was amyloid fibril specific and did not fluoresce appreciably in the presence of the monomeric precursor proteins. Stokes shifts of the wavelength maximum of Nile red bound to various fibrils were different (ranging from 615 nm to 638 nm) indicating sensitivity to the tertiary structure in its respective binding sites of different amyloid proteins. A polarity assay using ethanol-water mixtures and pure octanol ranging from dielectric constants between 10 and 70 showed a linear correlation of Nile red Stokes shift and allowed assignment of amyloid fibril binding site polarity. Fluorescence resonance energy transfer between Thioflavin T (ThT) and Nile red was proven to be efficient and co-staining was employed to discriminate between conformational isoforms of A beta 1-42 amyloid fibrils grown under agitated and quiescent conditions. This paper demonstrates the complementary use of this fluorometric method for conformational typing of amyloid structures.

  • 5.
    Nordeman, Patrik
    et al.
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    Johansson, Leif B. G.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Estrada, Sergio
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden..
    Hall, Håkan
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden..
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Westermark, Gunilla T.
    Department of Medicinal Cell Biology, Uppsala University, Uppsala, Sweden.
    Westermark, Per
    Department of Immunology, Genetics and Pathology, Uppsala University, UppsalaSweden.
    Nilsson, Lars
    Department of Pharmacology, University of Oslo, Oslo, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, K. Peter R.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Antoni, Gunnar
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    11C and 18FRadiolabeling of Tetra- and Pentathiophenes as PET-ligands for Amyloid Protein Aggregates2016In: ACS Medicinal Chemistry Letters, ISSN 1948-5875, E-ISSN 1948-5875, Vol. 7, no 4, p. 368-373Article in journal (Refereed)
    Abstract [en]

    Three oligothiophenes were evaluated as PET tracers for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver and spleen. To verify the specificity of the oligothiophenes towards amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, in vivo rat and monkey PET-CT studies showed very low uptake in the brain, pancreas and heart of the healthy animals indicating low non-specific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.

  • 6.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Luminescent molecular recognition of pathognomonic and aging associated protein aggregates2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Various protein inclusions have been recognized to be associated with aging and pathogenic conditions, such as in Alzheimer’s disease, Parkinson’s disease, Type 2 diabetes, and the prionoses Creutzfeldt-Jakob disease, Chronic wasting disease (CWD), and Mad cow disease. The causative transition of protein aggregation is the alteration in the conformation of the protein that renders the protein susceptible towards self-assembly. Variations in the physico-chemical ultrastructure of the protein deposit, i.e. the conformation and the chemical nature of the fibril constituent protein monomers, translate into specific structure-property phenotype, hence clinicopathology. Upon transmission and/or propagation this phenomenon gives rise to specific protein aggregate strains. Today most potential treatments of the protein conformational diseases have been a huge failure, effectively due to late diagnosis and subsequent therapeutic intervention. An imperative for efficient treatment is early detection and accurate identification for proper clinical diagnosis.

    The purpose of the studies in this thesis was to develop highly sensitive methods for detection and discrimination of age- and disease associated protein deposits both for in vitro and ex vivo utilization.

    Herein we have shown that, for in vitro usage, Nile red will bind to amyloid-like protein aggregates derived from a plethora of precursor proteins. It was also found that the fluorescence was insensitive to acidic assay conditions in contrast to the standard in vitro dye Thioflavin T (ThT). Further, Nile red was shown to discriminate between conformational isoforms thus enabling conformational typing of amyloid structures.

    For the development of ex vivo detection methods we employed luminescent conjugated oligothiophenes (LCOs) and utilized the structure-conformation induced optical properties of this class of protein aggregate ligands. The heptameric oligothiophene h-FTAA was successfully used to detect, with high sensitivity, protein deposits from various systemic amyloidoses (ATTR, AA, AL-λ/κ, and the local amyloidosis AIAPP) derived from biopsy specimens. Also aging-associated protein deposits were detected which was found promising for early detection of potentially pathogenic protein inclusions. Further, LCO staining of tissue sections was found compatible with immunolabeling enabling subtyping of involved proteins. Early detection of amyloidosis also requires relatively non-invasive methods, why h-FTAA staining was directed towards fine-needle-aspirated (FNA) abdominal fat tissue smears. Staining of protein deposits and detection with high sensitivity was also found in the fat tissue smears.

    In addition to the relatively rare prionoses it has lately been shown that Alzheimer’s, Parkinson’s diseases share similar properties as the prion pathologies. Hence the urgent need for ligands that will recognize specific disease specific strain aggregates. Using an established murine model for prion strain propagation we were able to discriminate two different prion strains, murine adapted Sheep Scrapie (mSS) and murine adapted Chronic wasting disease (mCWD) from each other by using multimodal fluorescence microscopy entailing emission/excitation spectral imaging and fluorescent lifetime imaging (FLIM).

    In conclusion we have shown that the LCOs will recognize protein aggregates with high sensitivity and selectivity. In addition we have shown that the LCOs detect protein aggregates that Congo red failed to recognize thus allowing potentially early diagnosis. Last, we show that the LCOs will recognize and discriminate between different protein aggregate strains which potentially will allow disease specific therapeutic targeting.

    List of papers
    1. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red
    Open this publication in new window or tab >>Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red
    2011 (English)In: MOLECULAR BIOSYSTEMS, ISSN 1742-206X, Vol. 7, no 4, p. 1232-1240Article in journal (Refereed) Published
    Abstract [en]

    The fluorescence of Nile red (9-diethylamino-5H-benzophenoxazine-5-one) is quenched in aqueous solutions but shows augmented fluorescence in hydrophobic environments. Nile red fluorescence was blue shifted and strongly augmented in the presence of various amyloid fibrils assayed under acidic as well as neutral pH conditions. Fibrils grown from lysozyme and insulin (at pH 1.6 and 65 degrees C), transthyretin (TTR) fibrils grown from the acid unfolded monomer (pH 2.0, 21 degrees C) or from the dissociated tetramer starting from native protein under less acidic conditions (pH 4.4, 37 degrees C) were detected. Nile red was also successfully employed in detecting A beta 1-42 and human prion protein (PrP90-231) amyloid fibrils grown at neutral pH. Nile red was amyloid fibril specific and did not fluoresce appreciably in the presence of the monomeric precursor proteins. Stokes shifts of the wavelength maximum of Nile red bound to various fibrils were different (ranging from 615 nm to 638 nm) indicating sensitivity to the tertiary structure in its respective binding sites of different amyloid proteins. A polarity assay using ethanol-water mixtures and pure octanol ranging from dielectric constants between 10 and 70 showed a linear correlation of Nile red Stokes shift and allowed assignment of amyloid fibril binding site polarity. Fluorescence resonance energy transfer between Thioflavin T (ThT) and Nile red was proven to be efficient and co-staining was employed to discriminate between conformational isoforms of A beta 1-42 amyloid fibrils grown under agitated and quiescent conditions. This paper demonstrates the complementary use of this fluorometric method for conformational typing of amyloid structures.

    Place, publisher, year, edition, pages
    Royal Society of Chemistry, 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-67157 (URN)10.1039/c0mb00236d (DOI)000288329300031 ()
    Available from: 2011-04-01 Created: 2011-04-01 Last updated: 2018-04-25
    2. Luminescent conjugated oligothiophenes: A novel dye for amyloid diagnostics
    Open this publication in new window or tab >>Luminescent conjugated oligothiophenes: A novel dye for amyloid diagnostics
    Show others...
    2013 (English)In: XIIIth International Symposium on Amyloidosis: From Misfolded Proteins to Well-Designed Treatment: The Proceedings of the XIIIth International Symposium on Amyloidosis,May 6-10, 2012, Groningen, The Netherlands / [ed] Bouke P.C. Hazenberg and Johan Bijzet, GUARD (Groningen Unit for Amyloidosis Research & Development) , 2013, p. 179-182Conference paper, Published paper (Refereed)
    Abstract [en]

    The alkaline Congo red staining method has, for almost half a century, been the gold standard of amyloid diagnosis. Unfortunately, the method is both laborious and requires great skill to achieve proper diagnosis. In this study we are presenting an alternative method that is compatible with immunofluorescence typing. We used a novel dye, h-FTAA, designed and synthesized by us. The dye belongs to the novel class of conformation sensitive dyes known as Luminescent conjugated oligothiophenes (LCOs). We examined 37 different cases of systemic amyloidoses from various tissues. It was found that h-FTAA binds to amyloid with higher sensitivity and greater selectivity than Congo red, as was determined by both fluorescence- and light polarization microscopy. Due to the methods ease of use and performance compared to Congo red, it is concluded that h-FTAA is a better first choice for screening of systemic amyloidoses.

    Place, publisher, year, edition, pages
    GUARD (Groningen Unit for Amyloidosis Research & Development), 2013
    National Category
    Chemical Sciences Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-106789 (URN)978-90-821593-0-1 (ISBN)978-90-821593-1-8 (ISBN)
    Conference
    The XIIIth International Symposium on Amyloidosis, May 6-10, 2012, Groningen, The Netherlands
    Available from: 2014-05-23 Created: 2014-05-23 Last updated: 2018-04-25Bibliographically approved
    3. Evaluation of the fluorescent amyloid ligand h-FTAA in human tissues with systemic and localized amyloid
    Open this publication in new window or tab >>Evaluation of the fluorescent amyloid ligand h-FTAA in human tissues with systemic and localized amyloid
    Show others...
    2014 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Rapid and accurate detection of amyloid deposits in routine surgical pathology settings are of great importance. The use of fluorescence microscopy in combination with appropriate amyloid specific dyes is very promising in this regard. Most systemic amyloidosis are progressive and lethal. Disease specific therapy depends on the identification of the offending proteins. Here we report that a luminescent conjugated oligothiophene, h-FTAA, rapidly and with high sensitivity and selectivity detects amyloid deposits in verified clinical samples from systemic amyloidosis patients with AA, AL, and ATTR types; as well as in tissues laden with localized amyloidosis of AANF, AIAPP and ASem1 type. The probe h-FTAA emitted yellow red fluorescence on binding to amyloid deposits, whereas no apparent staining was observed in surrounding tissue. Screening of 114 amyloid containing tissues derived from §07 verified (Congo red birefringence and immunohistochemistry) amyloidosis patients revealed complete correlation between h-FTAA and Congo red fluorescence. We conclude that h-FTAA is a fluorescent hypersensitive, rapid and powerful tool for identifying amyloid deposits in tissue sections. H-FTAA staining can be utilized as a rapid complementary technique for accurate detection of amyloid in routine surgical pathology settings. It was also revealed that within 5 of 15 age matched Congo red negative control samples h-FTAA detects microdeposits of amyloid-like protein aggregates in liver and kidney. The results emphasize the potential of the dye for detection of prodromal amyloidosis as well as for discovery of novel amyloid-like protein aggregates in humans.

    National Category
    Chemical Sciences Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-106790 (URN)
    Available from: 2014-05-23 Created: 2014-05-23 Last updated: 2018-04-25Bibliographically approved
    4. Sensitive and rapid assessment of amyloid by oligothiophene fluorescence in subcutaneous fat tissue
    Open this publication in new window or tab >>Sensitive and rapid assessment of amyloid by oligothiophene fluorescence in subcutaneous fat tissue
    Show others...
    2015 (English)In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 22, no 1, p. 19-25Article in journal (Refereed) Published
    Abstract [en]

    Systemic amyloidosis (SA) is often diagnosed late. Combining clinical and biochemical biomarkers is necessary for raising suspicion of disease. Fine needle aspiration (FNA) of subcutaneous fat enables SA detection by Congo red staining. The luminescent conjugated probe heptameric formic thiophene acetic acid (h-FTAA) is a sensitive alternative to Congo red-staining of tissue samples. Our objective was to compare h-FTAA fluorescence with the Congo red stain for amyloid detection in FNA-obtained fat tissue. Herein, we studied samples from 57 patients with established SA (19 with AA, 20 with AL, and 18 with ATTR) and 17 age-matched controls (34–75 years). Positivity for h-FTAA was graded according to a Congo red-based grading scale ranging from 0 to 4+. Amyloid grading by both methods correlated strongly (r = 0.87). Here h-FTAA was positive in 53 of 54 Congo red-positive cases (sensitivity 98%) and h-FTAA was negative in 7 of 17 Congo red-negative controls (specificity 41%), but was also positive for 3 Congo red-negative SA cases. We conclude that h-FTAA fluorescence is more sensitive than Congo red staining in this small exploratory study of fat tissue samples, implicating potential sensitivity for prodromal amyloidosis, but is less specific for clinical amyloidosis defined by Congo red positivity. Given its simplicity h-FTAA staining may therefore be the most appropriate method for rapid screening of fat tissue samples but should presently treat grade 1+ as only suggestive, whereas 2+ or higher as positive for amyloidosis. Parallel assessment of h-FTAA and Congo red staining appears highly promising for clinical applications.

    Place, publisher, year, edition, pages
    Informa Healthcare, 2015
    Keywords
    AA amyloidosis, amyloid light chain, hyper spectral imaging, systemic amyloidosis, transthyretin
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:liu:diva-117806 (URN)10.3109/13506129.2014.984063 (DOI)000352637800003 ()25847117 (PubMedID)
    Note

    At the time for thesis presentation publication was in status: Manuscript

    Funding Agencies|European Commission; Swedish Foundation for Strategic Research; Swedish Research Council; Linkoping University Center for Neuroscience; European Research Council

    Available from: 2015-05-11 Created: 2015-05-08 Last updated: 2018-04-25Bibliographically approved
    5. Multimodal fluorescene microscopy of prion strain specific PrP deposits stained by thiophene-bassed amyloid ligands
    Open this publication in new window or tab >>Multimodal fluorescene microscopy of prion strain specific PrP deposits stained by thiophene-bassed amyloid ligands
    Show others...
    2014 (English)In: Prion, ISSN 1933-6896, E-ISSN 1933-690X, Vol. 8, no 4, p. 319-329Article in journal (Refereed) Published
    Abstract [en]

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.

    Place, publisher, year, edition, pages
    Taylor & Francis, 2014
    National Category
    Chemical Sciences Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-106792 (URN)10.4161/pri.29239 (DOI)000348376000006 ()
    Available from: 2014-05-23 Created: 2014-05-23 Last updated: 2018-04-25Bibliographically approved
    6. Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand
    Open this publication in new window or tab >>Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand
    Show others...
    2013 (English)In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 34, no 9, p. 723-730Article in journal (Refereed) Published
    Abstract [en]

    Fluorescent probes identifying protein aggregates are of great interest, as deposition of aggregated proteins is associated with many devastating diseases. Here, we report that a fluorescent amyloid ligand composed of two distinct molecular moieties, an amyloidophilic pentameric oligothiophene and a porphyrin, can be utilized for spectral and lifetime imaging assessment of recombinant A 1-42 amyloid fibrils and A deposits in brain tissue sections from a transgenic mouse model with Alzheimers disease pathology. The enhanced spectral range and distinct lifetime diversity of this novel oligothiopheneporphyrin-based ligand allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye.

    Place, publisher, year, edition, pages
    Wiley-VCH Verlag, 2013
    Keywords
    oligothiophene, porphyrin, protein deposits, imaging, fluorescence
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-93385 (URN)10.1002/marc.201200817 (DOI)000318354500004 ()
    Note

    Funding Agencies|Swedish Research Council||Knut and Alice Wallenberg Foundation||Swedish Foundation for Strategic Research||European Union FP7 HEALTH (Project LUPAS)||LiU Neuroscience Center||ERC Starting Independent Researcher grant (Project: MUMID)||

    Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2018-08-24
  • 7.
    Sjölander, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Bijzet, Johan
    Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
    Hazenberg, Bouke P.
    Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Sensitive and rapid assessment of amyloid by oligothiophene fluorescence in subcutaneous fat tissue2015In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 22, no 1, p. 19-25Article in journal (Refereed)
    Abstract [en]

    Systemic amyloidosis (SA) is often diagnosed late. Combining clinical and biochemical biomarkers is necessary for raising suspicion of disease. Fine needle aspiration (FNA) of subcutaneous fat enables SA detection by Congo red staining. The luminescent conjugated probe heptameric formic thiophene acetic acid (h-FTAA) is a sensitive alternative to Congo red-staining of tissue samples. Our objective was to compare h-FTAA fluorescence with the Congo red stain for amyloid detection in FNA-obtained fat tissue. Herein, we studied samples from 57 patients with established SA (19 with AA, 20 with AL, and 18 with ATTR) and 17 age-matched controls (34–75 years). Positivity for h-FTAA was graded according to a Congo red-based grading scale ranging from 0 to 4+. Amyloid grading by both methods correlated strongly (r = 0.87). Here h-FTAA was positive in 53 of 54 Congo red-positive cases (sensitivity 98%) and h-FTAA was negative in 7 of 17 Congo red-negative controls (specificity 41%), but was also positive for 3 Congo red-negative SA cases. We conclude that h-FTAA fluorescence is more sensitive than Congo red staining in this small exploratory study of fat tissue samples, implicating potential sensitivity for prodromal amyloidosis, but is less specific for clinical amyloidosis defined by Congo red positivity. Given its simplicity h-FTAA staining may therefore be the most appropriate method for rapid screening of fat tissue samples but should presently treat grade 1+ as only suggestive, whereas 2+ or higher as positive for amyloidosis. Parallel assessment of h-FTAA and Congo red staining appears highly promising for clinical applications.

  • 8.
    Sjölander, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Mason, Jeffrey
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Westermark, G. T.
    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
    Westermark, P.
    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Luminescent conjugated oligothiophenes: A novel dye for amyloid diagnostics2013In: XIIIth International Symposium on Amyloidosis: From Misfolded Proteins to Well-Designed Treatment: The Proceedings of the XIIIth International Symposium on Amyloidosis,May 6-10, 2012, Groningen, The Netherlands / [ed] Bouke P.C. Hazenberg and Johan Bijzet, GUARD (Groningen Unit for Amyloidosis Research & Development) , 2013, p. 179-182Conference paper (Refereed)
    Abstract [en]

    The alkaline Congo red staining method has, for almost half a century, been the gold standard of amyloid diagnosis. Unfortunately, the method is both laborious and requires great skill to achieve proper diagnosis. In this study we are presenting an alternative method that is compatible with immunofluorescence typing. We used a novel dye, h-FTAA, designed and synthesized by us. The dye belongs to the novel class of conformation sensitive dyes known as Luminescent conjugated oligothiophenes (LCOs). We examined 37 different cases of systemic amyloidoses from various tissues. It was found that h-FTAA binds to amyloid with higher sensitivity and greater selectivity than Congo red, as was determined by both fluorescence- and light polarization microscopy. Due to the methods ease of use and performance compared to Congo red, it is concluded that h-FTAA is a better first choice for screening of systemic amyloidoses.

  • 9.
    Sjölander, Daniel
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Roecken, Christoph
    University of Kiel, Germany.
    Westermark, Per
    Uppsala University, Sweden.
    Westermark, Gunilla T.
    Uppsala University, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Establishing the fluorescent amyloid ligand h-FTAA for studying human tissues with systemic and localized amyloid2016In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 23, no 2, p. 98-108Article in journal (Refereed)
    Abstract [en]

    Rapid and accurate detection of amyloid deposits in routine surgical pathology settings are of great importance. The use of fluorescence microscopy in combination with appropriate amyloid specific dyes is very promising in this regard. Here we report that a luminescent conjugated oligothiophene, h-FTAA, rapidly and with high sensitivity and selectivity detects amyloid deposits in verified clinical samples from systemic amyloidosis patients with AA, AL and ATTR types; as well as in tissues laden with localized amyloidosis of AANF, AIAPP and ASem1 type. The probe h-FTAA emitted yellow red fluorescence on binding to amyloid deposits, whereas no apparent staining was observed in surrounding tissue. The only functional structure stained with h-FTAA showing the amyloidotypic fluorescence spectrum was Paneth cell granules in intestine. Screening of 114 amyloid containing tissues derived from 107 verified (Congo red birefringence and/or immunohistochemistry) amyloidosis patients revealed complete correlation between h-FTAA and Congo red fluorescence (107/107, 100% sensitivity). The majority of Congo red negative control cases (27 of 32, 85% specificity) were negative with h-FTAA. Small Congo red negative aggregates in kidney, liver, pancreas and duodenum were found by h-FTAA fluorescence in five control patients aged 72-83 years suffering from diverse diseases. The clinical significance of these false-positive lesions is currently not known. Because h-FTAA fluorescence is one magnitude brighter than Congo red and as the staining is performed four magnitudes lower than the concentration of dye, we believe that these inclusions are beyond detection by Congo red. We conclude that h-FTAA is a fluorescent hypersensitive, rapid and powerful tool for identifying amyloid deposits in tissue sections. Use of h-FTAA can be exploited as a rapid complementary technique for accurate detection of amyloid in routine surgical pathology settings. Our results also implicate the potential of the technique for detection of prodromal amyloidosis as well as for discovery of new amyloid-like protein aggregates in humans.

  • 10.
    Sjölander, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Röcken, Christoph
    Institute of Pathology, Christian-Albrechts-Univeristy, Kiel, Germany.
    Westermark, Per
    Department of Immunology, Uppsala University, Uppsala, Sweden.
    Westermark, Gunilla T.
    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Evaluation of the fluorescent amyloid ligand h-FTAA in human tissues with systemic and localized amyloid2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Rapid and accurate detection of amyloid deposits in routine surgical pathology settings are of great importance. The use of fluorescence microscopy in combination with appropriate amyloid specific dyes is very promising in this regard. Most systemic amyloidosis are progressive and lethal. Disease specific therapy depends on the identification of the offending proteins. Here we report that a luminescent conjugated oligothiophene, h-FTAA, rapidly and with high sensitivity and selectivity detects amyloid deposits in verified clinical samples from systemic amyloidosis patients with AA, AL, and ATTR types; as well as in tissues laden with localized amyloidosis of AANF, AIAPP and ASem1 type. The probe h-FTAA emitted yellow red fluorescence on binding to amyloid deposits, whereas no apparent staining was observed in surrounding tissue. Screening of 114 amyloid containing tissues derived from §07 verified (Congo red birefringence and immunohistochemistry) amyloidosis patients revealed complete correlation between h-FTAA and Congo red fluorescence. We conclude that h-FTAA is a fluorescent hypersensitive, rapid and powerful tool for identifying amyloid deposits in tissue sections. H-FTAA staining can be utilized as a rapid complementary technique for accurate detection of amyloid in routine surgical pathology settings. It was also revealed that within 5 of 15 age matched Congo red negative control samples h-FTAA detects microdeposits of amyloid-like protein aggregates in liver and kidney. The results emphasize the potential of the dye for detection of prodromal amyloidosis as well as for discovery of novel amyloid-like protein aggregates in humans.

  • 11.
    Wickham, Abeni
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Bergström, Gunnar
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering.
    Wang, Ergang
    Chalmers, Sweden.
    Rajendran, Vijayalakshmi
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Skoglund, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Near-Infrared Emitting and Pro-Angiogenic Electrospun Conjugated Polymer Scaffold for Optical Biomaterial Tracking2015In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, no 27, p. 4274-4281Article in journal (Refereed)
    Abstract [en]

    Noninvasive tracking of biomaterials is vital for determining the fate and degradation of an implant in vivo, and to show its role in tissue regeneration. Current biomaterials have no inherent capacity to enable tracing but require labeling with, for example, fluorescent dyes, or nanoparticles. Here a novel biocompatible fully conjugated electrospun scaffold is described, based on a semiconducting luminescent polymer that can be visualized in situ after implantation using fluorescence imaging. The polymer, poly [2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt -thiophene-2,5-diyl] (TQ1), is electrospun to form a fibrous mat. The fibers display fluorescence emission in the near-infrared region with lifetimes in the sub-nanosecond range, optimal for in situ imaging. The material shows no cytotoxic behaviors for embryonic chicken cardiomyocytes and mouse myoblasts, and cells migrate onto the TQ1 fibers even in the presence of a collagen substrate. Subcutaneous implantations of the material in rats show incorporation of the TQ1 fibers within the tissue, with limited inflammation and a preponderance of small capillaries around the fibers. The fluorescent properties of the TQ1 fibers are fully retained for up to 90 d following implantation and they can be clearly visualized in tissue using fluorescence and lifetime imaging, thus making it both a pro-angiogenic and traceable biomaterial.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf