liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bubnova, Olga
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Malti, Abdellah
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)2011Inngår i: NATURE MATERIALS, ISSN 1476-1122, Vol. 10, nr 6, s. 429-433Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 degrees C, the best commercially available inorganic semiconductors are bismuth telluride (Bi2Te3)-based alloys, which possess a figure of merit ZT close to one(1). Most of the recently discovered thermoelectric materials with ZT andgt; 2 exhibit one common property, namely their low lattice thermal conductivities(2,3). Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (lambda = D 0.37W m(-1) K-1) yields a ZT = 0.25 at room temperature that approaches the values required for efficient devices.

  • 2.
    Edberg, Jesper
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Malti, Abdellah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    RISE Bioeconomy.
    Hamedi, Mahiar M.
    KTH Royal Institute of Technology.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite2017Inngår i: Flexible and printed electronics, E-ISSN 2058-8585, Vol. 4, nr 2, artikkel-id 045010Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics(an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm−1 ). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NOR logic.

  • 3.
    Malti, Abdellah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Upscaling Organic Electronic Devices2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Conventional electronics based on silicon, germanium, or compounds of gallium require prohibitively expensive investments. A state-of-the-art microprocessor fabrication facility can cost up to $15 billion while using environmentally hazardous processes. In that context, the discovery of solution-processable conducting (and semiconducting) polymers stirred up expectations of ubiquitous electronics because it enables the mass-production of devices using well established high-volume printing techniques.

    In essence, this thesis attempts to study the characteristics and applications of thin conducting polymer films (<200 nm), and scale them up to thick-films (>100 μm). First, thin-films of organic materials were combined with an electric double layer capacitor to decrease the operating voltage of organic field effect transistors. In addition, ionic current-rectifying diodes membranes were integrated inside electrochromic displays to increase the device’s bistability and obviate the need for an expensive addressing backplane.

    This work also shows that it is possible to forgo the substrate and produce a self-standing electrochromic device by compositing the same water-processable material with nanofibrillated cellulose (plus a whitening pigment and high-boiling point solvents). In addition, we investigated the viability of these (semi)conducting polymer nanopaper composites in a variety of applications. This material exhibited an excellent combined electronic-ionic conductivity. Moreover, the conductivities in this easy-to-process composite remained constant within a wide range of thicknesses. Initially, this (semi)conducting nanopaper composite was used to produce electrochemical transistors with a giant transconductance (>1 S). Subsequently, it was used as electrodes to construct a supercapacitorwhose capacitance exceeds 1 F.

    Delarbeid
    1. Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors
    Åpne denne publikasjonen i ny fane eller vindu >>Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors
    2011 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 6, s. 063305-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Complementary circuits, processing digital signals, are a cornerstone of modern electronics. Such circuits require both p-and n-type transistors. Polyelectrolytes are used as gate insulators in organic thin film transistors (OTFTs) to establish an electric double layer capacitor upon gate bias that allows low operational voltages (andlt;1 V). However, stable and low-voltage operating n-channel organic transistors have proven difficult to construct. Here, we report ultra-low voltage n-channel organic polymer-based transistors that are stable in ambient atmosphere. Our n-type OTFTs exhibit on/off ratios around 10(3) for an applied drain potential as low as 0.1 V. Since small ions are known to promote electrochemical reactions within the semiconductors channel bulk and typically slow down the transistor, we use a solid polycationic gate insulator that suppresses penetration of anions into the n-channel semiconductor. As a result, our n-channel OTFTs switch on in under 5 ms and off in less than 1 ms.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2011
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-70331 (URN)10.1063/1.3626587 (DOI)000293857700076 ()
    Merknad
    |Swedish Government||Swedish Foundation for Strategic Research (OPEN)||Knut and Alice Wallenberg Foundation||Onnesjo Foundation||Tilgjengelig fra: 2011-09-02 Laget: 2011-09-02 Sist oppdatert: 2017-12-08
    2. Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors
    Åpne denne publikasjonen i ny fane eller vindu >>Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors
    2012 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 18, s. 183302-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Organic transistors that use polyelectrolytes as gate insulators can be driven at very low voltages (andlt;1 V). The low operating voltage is possible thanks to the formation of electric double layers upon polarization, which generates large electric fields at the critical interfaces in the device structure. In this work, we use a semiconducting blend (of a high electron affinity polymer and a low ionization potential one) in conjunction with a solid polyelectrolyte insulator to fabricate low-voltage ambipolar organic transistors. For both n- and p-channel operation, we use a polycation with readily mobile-yet large enough to limit bulk doping of the semiconductor-counterions.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-77731 (URN)10.1063/1.4709484 (DOI)000303598600055 ()
    Merknad
    Funding Agencies|EU through the EC|212311|Swedish Government (Advanced Functional Materials)||Swedish Foundation for Strategic Research (OPEN)||Knut and Alice Wallenberg Foundation||Onnesjo Foundation||Tilgjengelig fra: 2012-05-30 Laget: 2012-05-28 Sist oppdatert: 2017-12-07
    3. An Electrochromic Bipolar Membrane Diode
    Åpne denne publikasjonen i ny fane eller vindu >>An Electrochromic Bipolar Membrane Diode
    2015 (engelsk)Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 27, nr 26, s. 3909-+Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the devices bistability. Such devices can be made from solution-processable materials.

    sted, utgiver, år, opplag, sider
    Wiley-VCH Verlag, 2015
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-120341 (URN)10.1002/adma.201500891 (DOI)000357688900008 ()26016815 (PubMedID)
    Merknad

    Funding Agencies|Swedish foundation for strategic research; Knut and Alice Wallenberg foundation; VINNOVA; Advanced Functional Materials Center at Linkoping University; European Research Council [307596]

    Tilgjengelig fra: 2015-07-31 Laget: 2015-07-31 Sist oppdatert: 2017-12-04
    4. A substrate-free electrochromic device
    Åpne denne publikasjonen i ny fane eller vindu >>A substrate-free electrochromic device
    Vise andre…
    2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Electrochromic displays based on conducting polymers offer higher contrast, are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. The field of organic electrochromics has made considerable strides in the last decade with the development of new materials and methods. Here, we present a cellulose composite combining PEDOT:PSS and TiO2 that is a free-standing electrochromic material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast exceeding 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT:PSS at the surface. Variation of TiO2 within the material led to a trade-off in optical and electrical properties. A proof of concept free-standing electrochromic device was fabricated by casting several layers, which was found to be stable over 100 cycles.

    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-122020 (URN)
    Tilgjengelig fra: 2015-10-16 Laget: 2015-10-16 Sist oppdatert: 2017-02-03bibliografisk kontrollert
    5. Enabling organic power electronics with a cellulose nano-scaffold
    Åpne denne publikasjonen i ny fane eller vindu >>Enabling organic power electronics with a cellulose nano-scaffold
    Vise andre…
    2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.

    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-122021 (URN)
    Tilgjengelig fra: 2015-10-16 Laget: 2015-10-16 Sist oppdatert: 2018-02-15bibliografisk kontrollert
  • 4.
    Malti, Abdellah
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors2012Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 18, s. 183302-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic transistors that use polyelectrolytes as gate insulators can be driven at very low voltages (andlt;1 V). The low operating voltage is possible thanks to the formation of electric double layers upon polarization, which generates large electric fields at the critical interfaces in the device structure. In this work, we use a semiconducting blend (of a high electron affinity polymer and a low ionization potential one) in conjunction with a solid polyelectrolyte insulator to fabricate low-voltage ambipolar organic transistors. For both n- and p-channel operation, we use a polycation with readily mobile-yet large enough to limit bulk doping of the semiconductor-counterions.

  • 5.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    University of S Australia, Australia.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    AcreoSwedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    A substrate-free electrochromic device2015Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Electrochromic displays based on conducting polymers offer higher contrast, are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. The field of organic electrochromics has made considerable strides in the last decade with the development of new materials and methods. Here, we present a cellulose composite combining PEDOT:PSS and TiO2 that is a free-standing electrochromic material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast exceeding 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT:PSS at the surface. Variation of TiO2 within the material led to a trade-off in optical and electrical properties. A proof of concept free-standing electrochromic device was fabricated by casting several layers, which was found to be stable over 100 cycles.

  • 6.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Khan, Zia Ullah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Roskilde, Denmark.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Yao, Ylong
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Brill, Joseph W.
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wåberg, Lars
    KTH Royal Institute of Technology, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, and Wallenberg Wood Science Center, Stockholm, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Enabling organic power electronics with a cellulose nano-scaffold2015Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.

  • 7.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W
    Technical University of Denmark, Roskilde.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    University of Kentucky, Lexington.
    Yao, Yulong
    University of Kentucky, Lexington.
    Brill, Joseph W
    University of Kentucky, Lexington.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wågberg, Lars
    KTH Royal Institute of Technology, Stockholm.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Organic Mixed Ion–Electron Conductor for Power Electronics2016Inngår i: Advanced Science, ISSN 2198-3844, artikkel-id 1500305Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  • 8.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors2011Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 6, s. 063305-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Complementary circuits, processing digital signals, are a cornerstone of modern electronics. Such circuits require both p-and n-type transistors. Polyelectrolytes are used as gate insulators in organic thin film transistors (OTFTs) to establish an electric double layer capacitor upon gate bias that allows low operational voltages (andlt;1 V). However, stable and low-voltage operating n-channel organic transistors have proven difficult to construct. Here, we report ultra-low voltage n-channel organic polymer-based transistors that are stable in ambient atmosphere. Our n-type OTFTs exhibit on/off ratios around 10(3) for an applied drain potential as low as 0.1 V. Since small ions are known to promote electrochemical reactions within the semiconductors channel bulk and typically slow down the transistor, we use a solid polycationic gate insulator that suppresses penetration of anions into the n-channel semiconductor. As a result, our n-channel OTFTs switch on in under 5 ms and off in less than 1 ms.

  • 9.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Electrochromic Bipolar Membrane Diode2015Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 27, nr 26, s. 3909-+Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the devices bistability. Such devices can be made from solution-processable materials.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf