liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Devadurgam, Hemanth
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Rajagopal, Soorya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Modeling and Sizing of Conventional and Electrical Environmental Control Systems2019Report (Refereed)
    Abstract [en]

    Environmental control system holds vital importance as it is responsible for passenger’s ventilation and comfort. This paper presents modelling and sizing of the parameterized model of environmental control systems. Knowledge based engineering application serves as the base for designing and methodology for the environmental control systems. Flexibility in the model enables user to control the size and positioning of the system and also sub-systems  associated with it. Number of passengers serves as the driving input for the environmental control system. A 3-d model gives the exact representation with respect to volume occupied and dependencies on the number of passengers. It also provides a faster method to alter the system to user needs with respect to number of air supply pipes, number of ducts and pipe length. Knowledge based engineering gives the freedom to visualize various options in the conceptual design process.

  • 2.
    Diaz Puebla, Alejandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Sizing of actuators for flight control systems and flaps integration in RAPID2015Report (Other academic)
    Abstract [en]

    The architecture of the flight control system, essentialfor all flight operations, has significantlychanged throughout the years. The first part ofthe work consists of a preliminary sizing modelof an EHA and an EMA. The second part of thework consists of the development of parametricCAD models of different types of flaps and theirintegration in RAPID. This thesis addresses theactuation system architecture of what it is namedas more electric aircraft with electrically poweredactuators. This consists of the development offlexible parametric models of flight control surfaces,being able to adapt to any wing geometryand their automatic integration in RAPID. Furthermore,it represents a first step in the developmentof an automatic tool that allows the user tochoose any possible wing control surface configuration.

  • 3. Escolano Andrés, Inés
    et al.
    Chaitanya Munjulury, Raghu
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Knowledge-Based Flight Control System Integration in RAPID2015Report (Other academic)
    Abstract [en]

    Nowadays, aircraft’s design and development processes are not only time-consuming but also incur high economic cost. In addition, system integration is highly a multi-disciplinary design process, which involves a large number of different discipline teams working at the same time and space. The main objective of this work is to investigate in the early design stages to define and integrate flight control system. The purpose is to improve the functionality of an in house produced aircraft conceptual design tool RAPID carried out at the Division of Fluid and Mechatronic Systems, Linköping University.

  • 4.
    Munjulury, Raghu
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Borhani Coca, D.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Pares Prat, A.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Analytical weight estimation of landing gear designs2017In: Proceedings of the Institution of Mechanical Engineers. Part G, Journal of Aerospace Engineering, ISSN 0954-4100, E-ISSN 2041-3025, Vol. 231, no 12, p. 2214-2227Article in journal (Refereed)
    Abstract [en]

    Landing gear weight calculations can be carried out using statistical or analytical methods. Statistical methods were used in the past and offered quick group weights. However, they are not capable of computing accurately the weight of landing gears, which have special geometries and performance. In this work, landing gear weight is computed using analytical methods based on parametric 3D models. The procedure established by Kraus and Wille is applied as a baseline so as to create a procedure capable of dealing with landing gear weight calculations. This method is designed to be as flexible as possible, giving the user the freedom to modify many options and parameters and integrate landing gear design into Robust Aircraft Parametric Interactive Design.

  • 5.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Knowledge-Based Integrated Aircraft Design: An Applied Approach from Design to Concept Demonstration2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The design and development of new aircraft are becoming increasingly expensive and timeconsuming. To assist the design process in reducing the development cost, time, and late design changes, the conceptual design needs enhancement using new tools and methods. Integration of several disciplines in the conceptual design as one entity enables to keep the design process intact at every step and obtain a high understanding of the aircraft concepts at early stages.

    This thesis presents a Knowledge-Based Engineering (KBE) approach and integration of several disciplines in a holistic approach for use in aircraft conceptual design. KBE allows the reuse of obtained aircrafts’ data, information, and knowledge to gain more awareness and a better understanding of the concept under consideration at early stages of design. For this purpose, Knowledge-Based (KB) methodologies are investigated for enhanced geometrical representation and enable variable fidelity tools and Multidisciplinary Design Optimization (MDO). The geometry parameterization techniques are qualitative approaches that produce quantitative results in terms of both robustness and flexibility of the design parameterization. The information/parameters from all tools/disciplines and the design intent of the generated concepts are saved and shared via a central database.

    The integrated framework facilitates multi-fidelity analysis, combining low-fidelity models with high-fidelity models for a quick estimation, enabling a rapid analysis and enhancing the time for a MDO process. The geometry is further propagated to other disciplines [Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA)] for analysis. This is possible with an automated streamlined process (for CFD, FEM, system simulation) to analyze and increase knowledge early in the design process. Several processes were studied to streamline the geometry for CFD. Two working practices, one for parametric geometry and another for KB geometry are presented for automatic mesh generation.

    It is observed that analytical methods provide quicker weight estimation of the design and when coupled with KBE provide a better understanding. Integration of 1-D and 3-D models offers the best of both models: faster simulation, and superior geometrical representation. To validate both the framework and concepts generated from the tools, they are implemented in academia in several courses at Linköping University and in industry

    List of papers
    1. A knowledge-based integrated aircraft conceptual design framework
    Open this publication in new window or tab >>A knowledge-based integrated aircraft conceptual design framework
    2016 (English)In: CEAS Aeronautical Journal, ISSN 1869-5582, 1869-5590, Vol. 7, no 1, p. 95-105Article in journal (Refereed) Published
    Abstract [en]

    "The conceptual design is the early stage of aircraft design process where results are needed fast, both analytically and visually so that the design can be analyzed and eventually improved in the initial phases. Although there is no necessity for a CAD model from the very beginning of the design process, it can be an added advantage to have the model to get the impression and appearance. Furthermore, this means that a seamless transition into preliminary design is achieved since the CAD model can guardedly be made more detailed. For this purpose, knowledge-based aircraft conceptual design applications Tango (Matlab) and RAPID (CATIA) are being developed at Linköping University. Based on a parametric data definition in XML, this approach allows for a full 3D CAD integration. The one-database approach, also explored by many research organizations, enables the flexible and efficient integration of the different multidisciplinary processes during the whole conceptual design phase. This paper describes the knowledge-based design automated methodology of RAPID, data processing between RAPID and Tango and its application in the courses ‘‘Aircraft conceptual design’’ and ‘‘Aircraft project course’’ at Linköping University. A multifaceted user interface is developed to assist the whole design process."

    Place, publisher, year, edition, pages
    Springer, 2016
    Keywords
    Aircraft conceptual design, Knowledge based, XML database
    National Category
    Aerospace Engineering
    Identifiers
    urn:nbn:se:liu:diva-126689 (URN)10.1007/s13272-015-0174-z (DOI)
    Projects
    NFFP5/NFFP6
    Available from: 2016-04-01 Created: 2016-04-01 Last updated: 2018-02-07
    2. Knowledge-based design for future combat aircraft concepts
    Open this publication in new window or tab >>Knowledge-based design for future combat aircraft concepts
    Show others...
    2014 (English)Conference paper, Published paper (Refereed)
    Abstract [en]

    A new fighter aircraft will most likely be acollaborative project. In this study conceptualknowledge-based design is demonstrated, usingmodels of comparable fidelity for sizing, geometrydesign, aerodynamic analysis and system simulationfor aircraft conceptual design. A newgeneration fighter is likely to involve advancedcontrol concept where an assessment of feasibilitythrough simulation is needed already atthe conceptual stage. This co-design leads to adeeper understanding of the trade-offs involved.In this paper a study for a future combat aircraftis made. Conceptual knowledge-based design isdemonstrated by optimizing for a design mission,including a super-cruise segment.

    Place, publisher, year, edition, pages
    St. Peterberg: , 2014
    Keywords
    Conceptual design, Aircraft design, Engine design, Knowledge-based
    National Category
    Aerospace Engineering
    Identifiers
    urn:nbn:se:liu:diva-114902 (URN)
    Conference
    29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia
    Projects
    NFFP5/NFFP6
    Available from: 2015-03-05 Created: 2015-03-05 Last updated: 2017-05-30Bibliographically approved
    3. Knowledge-based future combat aircraft optimization
    Open this publication in new window or tab >>Knowledge-based future combat aircraft optimization
    2016 (English)In: 30th Congress of the International Council of the AeronauticalSciences (ICAS 2016), Bonn: International Council of Aeronautical Sciences (ICAS) , 2016, Vol. 1, p. 273-280Conference paper, Published paper (Refereed)
    Abstract [en]

    Future combat aircraft inherently conceal all the components internally essentially for stealth reasons. The geometry is optimized for subsonic and supersonic flight area distribution and the components and payload to be fitted inside the aircraft. The basic requirements to accomplish are fuel consumption, mission profile, and military performance. Analytical methods comprise of a quick aerodynamic and structural optimization. The result obtained is then compared with multi-fidelity aero-structural analysis

    Place, publisher, year, edition, pages
    Bonn: International Council of Aeronautical Sciences (ICAS), 2016
    Keywords
    Knowledge Based, Combat aircraft, Conceptual Design, Optimization
    National Category
    Aerospace Engineering Vehicle Engineering Applied Mechanics Energy Engineering
    Identifiers
    urn:nbn:se:liu:diva-137644 (URN)978-1-5108-3455-2 (ISBN)
    Conference
    30th Congress of the International Council of the Aeronautical Sciences, Daejeon, South Korea, 25-30 September 2016.
    Projects
    NFFP5/NFFP6
    Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-06-02Bibliographically approved
    4. A comprehensive computational multidisciplinary design optimization approach for a tidal power plant turbine
    Open this publication in new window or tab >>A comprehensive computational multidisciplinary design optimization approach for a tidal power plant turbine
    Show others...
    2017 (English)In: Advances in Mechanical Engineering, ISSN 1687-8132, E-ISSN 1687-8140, Vol. 9, no 3, p. 1-13, article id 1687814017695174Article in journal (Refereed) Published
    Abstract [en]

    Multidisciplinary design optimization has become a powerful technique to facilitate continuous improvement of complex and multidisciplinary products. Parametric modeling is an essential part with tremendous impact on the flexibility and robustness of multidisciplinary design optimization. This article investigates the effect of relational and non-relational parameterization techniques on the robustness and flexibility of the conceptual design of a multidisciplinary product. Bench marking between relational and non-relational parameterization and their effect on flexibility and robustness indicate that the relational parameterization is an efficient method in the multidisciplinary design optimization process. The inherent properties of the method contribute to an efficient parametric modeling with improved communication between different disciplines. This enhances the performance of the multidisciplinary design optimization process and allows a more flexible and robust design. The considered disciplines are computer-aided design, computational fluid dynamics, finite element analysis, and dynamic simulation. A high-fidelity geometry created in a computer-aided design environment is computer-aided design centric approach and later used in computational fluid dynamics, finite element analysis for a better understanding of the product as it leads to precise outcomes. The proposed approach is implemented for the conceptual design of a novel product, a tidal power plant developed by Minesto AB using a multidisciplinary design optimization process.

    Place, publisher, year, edition, pages
    London: Sage Publications, 2017
    Keywords
    Parametric modeling, conceptual design, computer-aided design, computational fluid dynamics, finite element analysis, dynamic simulation, multidisciplinary design optimization
    National Category
    Aerospace Engineering Production Engineering, Human Work Science and Ergonomics Interaction Technologies
    Identifiers
    urn:nbn:se:liu:diva-137645 (URN)10.1177/1687814017695174 (DOI)000400394500001 ()2-s2.0-85018345706 (Scopus ID)
    Projects
    NFFP5/NFFP6
    Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-06-14Bibliographically approved
  • 6.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Knowledge-based Integrated Wing Automation and Optimization for Conceptual Design2015In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015Conference paper (Refereed)
    Abstract [en]

    Contemporary aircraft design and development incurs high costs and consumes a lot of time for research and implementation. To minimize the development cost, an improvement of the conceptual design phase is desirable. A framework to support the initial design space exploration and conceptual design phase is presently being developed at Linköping University. In the aircraft design, the geometry carries a critical, discriminating role since it stores a significant part of the information and the data needed for most investigations. Methodology for design automation of a wing with a detailed description such that the geometry is effectively propagated for further analysis is presented in this paper. Initial weight estimation of the wing is performed by combining the weight penalty method with a sophisticated CAD model. This wing model is used for airfoil shape optimization and later for structural optimization. A methodology for automatic meshing of the geometry for CFD and FEM when the surfaces increase or decrease during the design automation is proposed. The framework combining automation capability with shape and structural optimization will enhance the early design phases of aircraft conceptual design.

  • 7.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Martins Abdalla, Alvaro
    USP, São Carlos, Brazil.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Knowledge-based future combat aircraft optimization2016In: 30th Congress of the International Council of the AeronauticalSciences (ICAS 2016), Bonn: International Council of Aeronautical Sciences (ICAS) , 2016, Vol. 1, p. 273-280Conference paper (Refereed)
    Abstract [en]

    Future combat aircraft inherently conceal all the components internally essentially for stealth reasons. The geometry is optimized for subsonic and supersonic flight area distribution and the components and payload to be fitted inside the aircraft. The basic requirements to accomplish are fuel consumption, mission profile, and military performance. Analytical methods comprise of a quick aerodynamic and structural optimization. The result obtained is then compared with multi-fidelity aero-structural analysis

  • 8.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Nadali Najafabadi, Hossein
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Safavi, Edris
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Petter, Krus
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    A comprehensive computational multidisciplinary design optimization approach for a tidal power plant turbine2017In: Advances in Mechanical Engineering, ISSN 1687-8132, E-ISSN 1687-8140, Vol. 9, no 3, p. 1-13, article id 1687814017695174Article in journal (Refereed)
    Abstract [en]

    Multidisciplinary design optimization has become a powerful technique to facilitate continuous improvement of complex and multidisciplinary products. Parametric modeling is an essential part with tremendous impact on the flexibility and robustness of multidisciplinary design optimization. This article investigates the effect of relational and non-relational parameterization techniques on the robustness and flexibility of the conceptual design of a multidisciplinary product. Bench marking between relational and non-relational parameterization and their effect on flexibility and robustness indicate that the relational parameterization is an efficient method in the multidisciplinary design optimization process. The inherent properties of the method contribute to an efficient parametric modeling with improved communication between different disciplines. This enhances the performance of the multidisciplinary design optimization process and allows a more flexible and robust design. The considered disciplines are computer-aided design, computational fluid dynamics, finite element analysis, and dynamic simulation. A high-fidelity geometry created in a computer-aided design environment is computer-aided design centric approach and later used in computational fluid dynamics, finite element analysis for a better understanding of the product as it leads to precise outcomes. The proposed approach is implemented for the conceptual design of a novel product, a tidal power plant developed by Minesto AB using a multidisciplinary design optimization process.

  • 9.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Abdalla, Alvaro Martins
    The University of São Paulo (USP), Brazil.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Knowledge-based design for future combat aircraft concepts2014Conference paper (Refereed)
    Abstract [en]

    A new fighter aircraft will most likely be acollaborative project. In this study conceptualknowledge-based design is demonstrated, usingmodels of comparable fidelity for sizing, geometrydesign, aerodynamic analysis and system simulationfor aircraft conceptual design. A newgeneration fighter is likely to involve advancedcontrol concept where an assessment of feasibilitythrough simulation is needed already atthe conceptual stage. This co-design leads to adeeper understanding of the trade-offs involved.In this paper a study for a future combat aircraftis made. Conceptual knowledge-based design isdemonstrated by optimizing for a design mission,including a super-cruise segment.

  • 10.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Berry, Patrick
    Saab Aeronautics, Linköping.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    A knowledge-based integrated aircraft conceptual design framework2016In: CEAS Aeronautical Journal, ISSN 1869-5582, 1869-5590, Vol. 7, no 1, p. 95-105Article in journal (Refereed)
    Abstract [en]

    "The conceptual design is the early stage of aircraft design process where results are needed fast, both analytically and visually so that the design can be analyzed and eventually improved in the initial phases. Although there is no necessity for a CAD model from the very beginning of the design process, it can be an added advantage to have the model to get the impression and appearance. Furthermore, this means that a seamless transition into preliminary design is achieved since the CAD model can guardedly be made more detailed. For this purpose, knowledge-based aircraft conceptual design applications Tango (Matlab) and RAPID (CATIA) are being developed at Linköping University. Based on a parametric data definition in XML, this approach allows for a full 3D CAD integration. The one-database approach, also explored by many research organizations, enables the flexible and efficient integration of the different multidisciplinary processes during the whole conceptual design phase. This paper describes the knowledge-based design automated methodology of RAPID, data processing between RAPID and Tango and its application in the courses ‘‘Aircraft conceptual design’’ and ‘‘Aircraft project course’’ at Linköping University. A multifaceted user interface is developed to assist the whole design process."

  • 11.
    Munjulury, Raghu
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Arts and Sciences.
    Sabate Lopez, Adrian
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Knowledge-based aircraft fuel system integration2018In: AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, ISSN 1748-8842, Vol. 90, no 7, p. 1128-1135Article in journal (Refereed)
    Abstract [en]

    Purpose This paper aims to present a knowledge-based fuel system, implementation and application, oriented towards its use in aircraft conceptual design. Design/methodology/approach Methodology and software tools oriented to knowledge-based engineering applications (MOKA) is used as a foundation for the implementation and integration of fuel systems. Findings Including fuel systems earlier in the design process creates an opportunity to optimize it and obtain better solutions by allocating suitable locations in an aircraft, thereby reflecting on the centre of gravity of the aircraft. Research limitations/implications All geometries are symbolic, representing a space allocation inside the aircraft for the fuel system. A realistic representation of the real components could be realized in detail design. Practical implications Fuel weight is a significant part of take-off weight and decisive in aircraft sizing and range estimations. The three-dimensional geometry provides a better estimation of the volume that is available to allocate the necessary entities. It also provides fast measures for weight and balance, fuel capacity, relative tank positions and a first estimation of piping length. Originality/value Fuel systems appear early in the design process, as they are involved in several first estimations. By using a knowledge-based engineering approach, several alternatives can be visualized and estimated in the conceptual design process. Furthermore, using the weights and centre of gravity at different angles of pitch and roll of each fuel tank, the aircraft could be optimized for handling qualities by using automatically generated system simulation models.

  • 12.
    Munjulury, Venkata Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    With the ever growing complexity of aircrafts, new tools and eventually methods to use these tools are needed in aircraft conceptual design. To reduce the development cost, an enhancement in the conceptual design is needed.

    This thesis presents a knowledge-based aircraft geometry design tool RAPID and the methodology applied in realizing the design. The parameters used to create a geometry need to be exchange between different tools. This is achieved by using a centralized database or onedata concept. One-database will enable creating a less number of cross connections between different tools to exchange data with one another. Different types of aircraft configurations can be obtained with less effort. As RAPID is developed based on relational design, any changes made to the geometric model will update automatically. The geometry model is carefully defined to carry over to the preliminary design.

    The validation of RAPID is done by implementing it in different aircraft design courses at Linköping University. In the aircraft project course, RAPID was effectively used and new features were added to the obtained desired design. Knowledge-base is used to realize the design performance for the geometry with an integrated database approach for a multidisciplinary aircraft conceptual design.

    List of papers
    1. Model Based Aircraft Control System Design And Simulation
    Open this publication in new window or tab >>Model Based Aircraft Control System Design And Simulation
    2010 (English)In: 27th Congress of the International Council of the Aeronautical Sciences 2010 (ICAS 2010), Proceedings of a meeting held 19-24 September 2010, Nice, France. / [ed] Professor I Grant, Optimage Ltd. on behalf of the International Council of the Aeronautical Sciences (ICAS) , 2010, p. 3338-3347Conference paper, Published paper (Refereed)
    Abstract [en]

    Development of modern aircrafts has become more and more expensive and time consuming. In order to minimize the development cost, an improvement of the conceptual design phase is needed. The desired goal of the project is to enhance the functionality of an in house produced framework conducted at theDepartment of Machine Design, Link¨ping University, consisting of parametric aircraft models used for conceptual design. The former part of the work consists of the construction of geometric aircraft control surfaces such as flaps, aileron, rudder and elevator parametrically in CATIA V5. The next part of the work involves designing and simulating an Inverse dynamic model in Dymola software. An Excel interface has been developed between CATIA and Dymola. Parameters can be varied in the interface as per user specification; these values are sent to CATIA or Dymola and vice versa. The constructed concept model of control surfaces has been tested for different aircraft shapes and layout. An interface is developed between CATIA, Dymola and Tornado. An optimization case is performed to visualize the automation capability of choosing an actuator from a database for the proposed framework, and enhance the early design phases for aircraft conceptual design.

    Place, publisher, year, edition, pages
    Optimage Ltd. on behalf of the International Council of the Aeronautical Sciences (ICAS), 2010
    Keywords
    Aircraft Conceptual Design, Knowledge Based Design, Control System Design, Design Optimization
    National Category
    Aerospace Engineering
    Identifiers
    urn:nbn:se:liu:diva-70558 (URN)978-1-61782-049-6 (Local ID)978-0-9565333-0-2 (ISBN)978-1-61782-049-6 (Archive number)978-1-61782-049-6 (OAI)
    Conference
    ICAS 2010, 27th Congress of International Council of the Aeronautical Sciences, 19-24 September, Nice Frankrike
    Available from: 2011-09-12 Created: 2011-09-12 Last updated: 2015-06-02Bibliographically approved
    2. Multidisciplinary Optimization of Aircraft Vehicle System for Conceptual Analysis
    Open this publication in new window or tab >>Multidisciplinary Optimization of Aircraft Vehicle System for Conceptual Analysis
    2013 (English)In: , Aerospace Research Central, ARC , 2013, p. 1-9Conference paper, Published paper (Other academic)
    Abstract [en]

    An aircraft is a multifaceted product which requires cooperation between different engineering domains. Therefore, design of an aircraft is essentially a multidisciplinary activity with necessity of integrating dierent design tools to get an optimized product. At Linkoping University, a design framework is being developed to assist in the evaluation and optimization of various aircraft vehicle system architectures with the help of integrating a geometric, aerodynamic and dynamic models early in the conceptual design phase. This framework helps to identify a preliminary system concept for an energy optimized aircraft architecture with the focus on more electrical aircraft. As a case study the performance and geometrical aspects of an EMA (Electromechanical actuator) are evaluated and optimized.

    Place, publisher, year, edition, pages
    Aerospace Research Central, ARC, 2013
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-91291 (URN)
    Conference
    51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 7-10 January, Grapevine (Dallas/Ft. Worth Region), Texas
    Available from: 2013-04-19 Created: 2013-04-19 Last updated: 2015-06-02Bibliographically approved
    3. RAPID – Robust Aircraft Parametric Interactive Design: A Knowledge Based Aircraft Conceptual Design Tool
    Open this publication in new window or tab >>RAPID – Robust Aircraft Parametric Interactive Design: A Knowledge Based Aircraft Conceptual Design Tool
    2013 (English)In: Proceedings of the 4th CEAS Conference in Linköping 2013: 4:th CEAS conference, 2013 / [ed] Tomas Melin, Petter Krus, Emil Vinterhav and Knut Övrebo, Linköping, 2013, p. 255-262Conference paper, Published paper (Refereed)
    Abstract [en]

    Conceptual design is the early stage of theaircraft design process where results areneeded faster both analytically and visually sothat the design can be modified or changed atthe earliest stages. Although there is nonecessity for a CAD model from the verybeginning of the design process it can be anadded advantage to have the model, to get theimpression and appearance.Tango and RAPID are knowledge basedaircraft conceptual design applications beingdeveloped in Matlab and CATIA respectively.The user can work in parallel with bothprograms and exchange the data between themvia XML. This paper describes the knowledgebased design automated methodology of RAPIDand its application in the courses “Aircraftconceptual design” and “Aircraft projectcourse” at Linköping University. A multifaceteduser interface is developed to assist in the wholedesign processes.

    Place, publisher, year, edition, pages
    Linköping: , 2013
    Keywords
    Aircraft Conceptual Design, Knowledge Based, XML Data
    National Category
    Aerospace Engineering
    Identifiers
    urn:nbn:se:liu:diva-103182 (URN)978-91-7519-519-3 (ISBN)
    Conference
    CEAS 2013 - International Conference of the European Aerospace Societies, 16-19 September 2013, Linköping, Sweden
    Available from: 2014-01-14 Created: 2014-01-14 Last updated: 2015-06-02Bibliographically approved
    4. Integrated Aircraft Design Network
    Open this publication in new window or tab >>Integrated Aircraft Design Network
    2013 (English)In: CEAS 2013 The International Conference of the European Aerospace Societies: 4:th CEAS conference, 2013 / [ed] Tomas Melin, Petter Krus, Emil Vinterhav, Knut Övrebo, Linköping, 2013, p. 263-269Conference paper, Published paper (Refereed)
    Abstract [en]

    This paper describes the XML basedmultidisciplinary tool integration in aconceptual aircraft design framework,developed by the Division of Fluid andMechatronic Systems (FluMeS), LinköpingUniversity. Based on a parametric datadefinition in XML, this approach allows for afull 3D CAD integration. The one-databaseapproach, also conducted by many researchorganizations, enables the flexible and efficientintegration of the different multidisciplinaryprocesses during the whole conceptual designphase. This central database approach with adetailed explanation of the developed geometrydescription and the data processing, focusing onthe CAD integration is presented. Applicationexamples of the framework are presentedshowing the data build up and data handling.

    Place, publisher, year, edition, pages
    Linköping: , 2013
    Keywords
    aircraft conceptual design, parametric modeling, Knowledge based, sizing, XML database
    National Category
    Aerospace Engineering
    Identifiers
    urn:nbn:se:liu:diva-103178 (URN)978-91-7519-519-3 (ISBN)
    Conference
    CEAS 2013 - International Conference of the European Aerospace Societies, 16-19 September 2013, Linköping, Sweden
    Available from: 2014-01-14 Created: 2014-01-14 Last updated: 2014-05-27Bibliographically approved
  • 13.
    Munjulury, Venkata Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    RAPID – Robust Aircraft Parametric Interactive Design: A Knowledge Based Aircraft Conceptual Design Tool2013In: Proceedings of the 4th CEAS Conference in Linköping 2013: 4:th CEAS conference, 2013 / [ed] Tomas Melin, Petter Krus, Emil Vinterhav and Knut Övrebo, Linköping, 2013, p. 255-262Conference paper (Refereed)
    Abstract [en]

    Conceptual design is the early stage of theaircraft design process where results areneeded faster both analytically and visually sothat the design can be modified or changed atthe earliest stages. Although there is nonecessity for a CAD model from the verybeginning of the design process it can be anadded advantage to have the model, to get theimpression and appearance.Tango and RAPID are knowledge basedaircraft conceptual design applications beingdeveloped in Matlab and CATIA respectively.The user can work in parallel with bothprograms and exchange the data between themvia XML. This paper describes the knowledgebased design automated methodology of RAPIDand its application in the courses “Aircraftconceptual design” and “Aircraft projectcourse” at Linköping University. A multifaceteduser interface is developed to assist in the wholedesign processes.

  • 14.
    Munjulury, Venkata Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Integrated Aircraft Design Network2013In: CEAS 2013 The International Conference of the European Aerospace Societies: 4:th CEAS conference, 2013 / [ed] Tomas Melin, Petter Krus, Emil Vinterhav, Knut Övrebo, Linköping, 2013, p. 263-269Conference paper (Refereed)
    Abstract [en]

    This paper describes the XML basedmultidisciplinary tool integration in aconceptual aircraft design framework,developed by the Division of Fluid andMechatronic Systems (FluMeS), LinköpingUniversity. Based on a parametric datadefinition in XML, this approach allows for afull 3D CAD integration. The one-databaseapproach, also conducted by many researchorganizations, enables the flexible and efficientintegration of the different multidisciplinaryprocesses during the whole conceptual designphase. This central database approach with adetailed explanation of the developed geometrydescription and the data processing, focusing onthe CAD integration is presented. Applicationexamples of the framework are presentedshowing the data build up and data handling.

  • 15.
    Parés Prat, Andreu
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Borhani Coca, Dario
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Analytical weight estimation of unconventional landing gear designs2015In: Proceedings of the Institution of MechanicalEngineers, Part G: : Journal of Aerospace Engineering, 2015, , p. 10Conference paper (Refereed)
    Abstract [en]

    Landing gear weight calculations can be carried out using statistical or analytical methods. Statistical methods were used in the past and offered quick group weights, however, they are not capable of computing with accuracy the weight of unconventional landing gears which have special geometries and performances. In this work, landing gear weight is computed using analytical methods. The procedure established by Kraus and Wille is acquired as a baseline so as to create a program able to deal with landing gear weight calculations. This software has been designed to be as much flexible as possible, giving the user the freedom to modify many options and parameters.

  • 16.
    Sabaté López, Adrián
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Parametric Modeling of Aircraft Fuel Systems integration in RAPID2015Report (Other academic)
    Abstract [en]

    This work presents knowledge-based parametricdefinition of aircraft fuel systems, oriented to itsuse in conceptual design and integrated into theRAPID design tool. Fuel systems appear earlyin the design process as they are involved in severalfirst estimations. For instance, fuel weight isa significant part of take-off weight and decisivein aircraft sizing and range estimations. Therefore,including fuel systems earlier in the designprocess creates an opportunity to optimize it andobtain better solutions.

  • 17.
    Safavi, Edris
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Chaitanya, Raghu
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Multidisciplinary Optimization of Aircraft Vehicle System for Conceptual Analysis2013In: , Aerospace Research Central, ARC , 2013, p. 1-9Conference paper (Other academic)
    Abstract [en]

    An aircraft is a multifaceted product which requires cooperation between different engineering domains. Therefore, design of an aircraft is essentially a multidisciplinary activity with necessity of integrating dierent design tools to get an optimized product. At Linkoping University, a design framework is being developed to assist in the evaluation and optimization of various aircraft vehicle system architectures with the help of integrating a geometric, aerodynamic and dynamic models early in the conceptual design phase. This framework helps to identify a preliminary system concept for an energy optimized aircraft architecture with the focus on more electrical aircraft. As a case study the performance and geometrical aspects of an EMA (Electromechanical actuator) are evaluated and optimized.

  • 18.
    Safavi, Edris
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Tarkian, Mehdi
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Nadali Najafabadi, Hossein
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Munjulury, Raghu Chaitanya
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Implementation of collaborative multidisciplinary design optimization for conceptual design of a complex engineering product2016In: Concurrent Engineering - Research and Applications, ISSN 1063-293X, E-ISSN 1531-2003, Vol. 24, no 3, p. 251-265Article in journal (Refereed)
    Abstract [en]

    This study investigates the performance of the collaborative multidisciplinary design optimization framework and how it facilitates the knowledge integration process. The framework is used to design and optimize an innovative concept of a tidal water power plant. The case study helps to highlight the challenges that may occur during implementation. The result is presented as a modified framework with less implementation difficulties. The improved framework shows significant reduction in design time and improvement in collaborative design optimization for a design team. The geometry of the product is optimized to minimize weight and maximize the power generated by the turbine with respect to some mechanical constraints.

  • 19.
    Staack, Ingo
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Chaitanya Manjula, Raghu
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Parametric Aircraft Conceptual Design Space2012In: Prceedings of the 28th International Congress of the Aeronautical Sciences, 2012Conference paper (Other academic)
    Abstract [en]

    This paper presents the development of a design framework for the initial conceptual design phase. The focus in this project is on a flexible database in XML format, together with close integration of automated CAD, and other tools, which allows the developed geometry to be used directly in the subsequent preliminary design phase. The database and the geometry are also described and an overview is given of included tools like aerodynamic analysis and weight estimation.

  • 20.
    Staack, Ingo
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Chaitanya Munjulury, Raghu
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Abdalla, Alvaro Martins
    The University of São Paulo (USP), Brazil.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    CONCEPTUAL AIRCRAFT DESIGN MODEL MANAGEMENTDEMONSTRATED ON A 4TH GENERATION FIGHTER2014Conference paper (Refereed)
    Abstract [en]

    Model management during conceptual aircraftdesign is an important issue. This paper showsthe basic ideas and capabilities of the conceptualaircraft design framework developed atLinköping University with focus on efficient lowfidelity geometry definition. As an example, theanalysis of an F-16 fighter is presented.

  • 21.
    Venkata, Raghu. C. M.
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Tarkian, Mehdi
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Model Based Aircraft Control System Design And Simulation2010In: 27th Congress of the International Council of the Aeronautical Sciences 2010 (ICAS 2010), Proceedings of a meeting held 19-24 September 2010, Nice, France. / [ed] Professor I Grant, Optimage Ltd. on behalf of the International Council of the Aeronautical Sciences (ICAS) , 2010, p. 3338-3347Conference paper (Refereed)
    Abstract [en]

    Development of modern aircrafts has become more and more expensive and time consuming. In order to minimize the development cost, an improvement of the conceptual design phase is needed. The desired goal of the project is to enhance the functionality of an in house produced framework conducted at theDepartment of Machine Design, Link¨ping University, consisting of parametric aircraft models used for conceptual design. The former part of the work consists of the construction of geometric aircraft control surfaces such as flaps, aileron, rudder and elevator parametrically in CATIA V5. The next part of the work involves designing and simulating an Inverse dynamic model in Dymola software. An Excel interface has been developed between CATIA and Dymola. Parameters can be varied in the interface as per user specification; these values are sent to CATIA or Dymola and vice versa. The constructed concept model of control surfaces has been tested for different aircraft shapes and layout. An interface is developed between CATIA, Dymola and Tornado. An optimization case is performed to visualize the automation capability of choosing an actuator from a database for the proposed framework, and enhance the early design phases for aircraft conceptual design.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf