liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chason, E.
    et al.
    Brown University, USA.
    Karlson, M.
    Brown University, USA.
    Colin, J. J.
    University of Poitiers, France.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Abadias, G.
    University of Poitiers, France.
    A kinetic model for stress generation in thin films grown from energetic vapor fluxes2016Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, nr 14, artikkel-id 145307Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced subsurface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films. Published by AIP Publishing.

  • 2.
    Eklund, Per
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Frodelius, Jenny
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Epitaxial growth of gamma-Al2O3 on Ti2AlC(0001) by reactive high-power impulse magnetron sputtering2014Inngår i: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 4, nr 1, s. 017138-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Al2O3 was deposited by reactive high-power impulse magnetron sputtering at 600 degrees C onto pre-deposited Ti2AlC(0001) thin films on alpha-Al2O3(0001) substrates. The Al2O3 was deposited to a thickness of 65 nm and formed an adherent layer of epitaxial gamma-Al2O3(111) as shown by transmission electron microscopy. The demonstration of epitaxial growth of gamma-Al2O3 on Ti2AlC (0001) open prospects for growth of crystalline alumina as protective coatings on Ti2AlC and related nanolaminated materials. The crystallographic orientation relationships are gamma-Al2O3(111)//Ti2AlC(0001) (out-of-plane) and gamma-Al2O3(2 (2) over bar0)//Ti2AlC(11 (2) over bar0) (in-plane) as determined by electron diffraction. Annealing in vacuum at 900 degrees C resulted in partial decomposition of the Ti2AlC by depletion of Al and diffusion into and through the gamma-Al2O3 layer.

  • 3.
    Elofsson, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Münger, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films2014Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 116, nr 4, s. 044302-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The initial formation stages (i.e., island nucleation, island growth, and island coalescence) set characteristic length scales during growth of thin films from the vapour phase. They are, thus, decisive for morphological and microstructural features of films and nanostructures. Each of the initial formation stages has previously been well-investigated separately for the case of Volmer-Weber growth, but knowledge on how and to what extent each stage individually and all together affect the microstructural evolution is still lacking. Here we address this question using growth of Ag on SiO2 from pulsed vapour fluxes as a case study. By combining in situ growth monitoring, ex situ imaging and growth simulations we systematically study the growth evolution all the way from nucleation to formation of a continuous film and establish the effect of the vapour flux time domain on the scaling behaviour of characteristic growth transitions (elongation transition, percolation and continuous film formation). Our data reveal a pulsing frequency dependence for the characteristic film growth transitions, where the nominal transition thickness decreases with increasing pulsing frequency up to a certain value after which a steady-state behaviour is observed. The scaling behaviour is shown to result from differences in island sizes and densities, as dictated by the initial film formation stages. These differences are determined solely by the interplay between the characteristics of the vapour flux and time required for island coalescence to be completed. In particular, our data provide evidence that the steady-state scaling regime of the characteristic growth transitions is caused by island growth that hinders coalescence from being completed, leading to a coalescence-free growth regime.

  • 4.
    Elofsson, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Samuelsson, M
    Impact Coatings, Linköping, Sweden .
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Tilt of the columnar microstructure in off-normally deposited thin films using highly ionized vapor fluxes2013Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, nr 17, s. 7 pages-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The tilt of the columnar microstructure has been studied for Cu and Cr thin films grown off-normally using highly ionized vapor fluxes, generated by the deposition technique high power impulse magnetron sputtering. It is found that the relatively large column tilt (with respect to the substrate normal) observed for Cu films decreases as the ionization degree of the deposition flux increases. On the contrary, Cr columns are found to grow relatively close to the substrate normal and the column tilt is independent from the ionization degree of the vapor flux when films are deposited at room temperature. The Cr column tilt is only found to be influenced by the ionized fluxes when films are grown at elevated temperatures, suggesting that film morphology during the film nucleation stage is also important in affecting column tilt. A phenomenological model that accounts for the effect of atomic shadowing at different nucleation conditions is suggested to explain the results.

  • 5.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Fundamental processes in thin film growth: The origin of compressive stress and the dynamics of the early growth stages2014Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The fundamental mechanisms behind the generation of compressive stresses in polycrystalline thin films, the effects of pulsed deposition fluxes on the dynamics of the early growth stages as well as the generation of energetic Ar+ ions in high power impulse magnetron sputtering (HiPIMS) discharges has been studied in this thesis.

    It was found that compressive film stresses in Mo films deposited using energetic vapor fluxes are correlated with high film densities while only a slight lattice expansion compared to relaxed Mo was found. This implies that the stress is caused by grain boundary densification and not defect creation in the grain bulk. The compressive stress magnitude should scale with the grain boundary length per unit area, or the inverse grain size, if the stress originates in the grain boundaries. This was found to be the case for dense Mo films confirming that the observed compressive stresses originate in the grain boundaries. Similarly to what has been suggested for conditions where adatoms are highly mobile we suggest that atom insertion into grain boundaries is the cause of the compressive stresses observed in the Mo films.

    Island nucleation, growth and coalescence are the dynamic processes that decide the initial microstructure of thin films growing in a three dimensional fashion. Using Ag on SiO2 as a model system and estimations of adatom life times and coalescence time it was shown that the time scales of island nucleation and coalescence are in the same range as the time scale of the vapor flux modulation in HiPIMS and other pulsed deposition methods. In situ real time measurements were used to demonstrate that it is possible to decrease the thickness at which a continuous film is formed from 21 to 15 nm by increasing the flux modulation frequency. A more in depth study where in situ real time monitoring was coupled with ex situ imaging and kinetic Monte Carlo simulations showed that this behavior is due to the interplay of the pulsed deposition flux and island coalescence where island coalescence is hindered at high pulsing frequencies.

    The generation of energetic Ar+ ions was investigated by ion mass spectrometry and Monte Carlo simulations of gas transport. It was shown that the energetic Ar+ ions originate from Ar atoms backscattered from the target that are ionized in the plasma by correlating the length of the high energy tail in the ion energy distribution functions with the atomic mass of the Cr, Mo and W sputtering targets. 

    Delarbeid
    1. Atom insertion into grain boundaries and stress generation in physically vapor deposited films
    Åpne denne publikasjonen i ny fane eller vindu >>Atom insertion into grain boundaries and stress generation in physically vapor deposited films
    2013 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, nr 5Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    We present evidence for compressive stress generation via atom insertion into grain boundaries in polycrystalline Mo thin films deposited using energetic vapor fluxes (<∼120 eV). Intrinsic stress magnitudes between −3 and +0.2 GPa are obtained with a nearly constant stress-free lattice parameter marginally larger (0.12%) than that of bulk Mo. This, together with a correlation between large compressive film stresses and high film densities, implies that the compressive stress is not caused by defect creation in the grains but by grain boundary densification. Two mechanisms for diffusion of atoms into grain boundaries and grain boundary densification are suggested.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2013
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98154 (URN)10.1063/1.4817669 (DOI)000322723000036 ()
    Merknad

    Funding Agencies|COST Action|MP0804|Linkoping University.

    The previous status of this article was Manuscript and the working title was Atomistic mechanisms leading to adatom insertion into grain boundaries and stress generation in physically vapor deposited films.

    Tilgjengelig fra: 2013-09-30 Laget: 2013-09-30 Sist oppdatert: 2017-12-06
    2. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films
    Åpne denne publikasjonen i ny fane eller vindu >>Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films
    Vise andre…
    2016 (engelsk)Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, nr 5, s. 055305-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low. (C) 2016 AIP Publishing LLC.

    sted, utgiver, år, opplag, sider
    AMER INST PHYSICS, 2016
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-125810 (URN)10.1063/1.4941271 (DOI)000369900600028 ()
    Merknad

    Funding Agencies|COST Action "Highly Ionized Pulsed Plasmas" [MP0804]; Swedish Research Council VR [621-2014-4882]; Linkoping University via the "LiU Research Fellows" program.

    The previous status of this article was Manuscript and the working title was Atom insertion into grain boundaries generates compressive intrinsic stress in polycrystalline thin films.

    Tilgjengelig fra: 2016-03-08 Laget: 2016-03-04 Sist oppdatert: 2017-11-30bibliografisk kontrollert
    3. Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Åpne denne publikasjonen i ny fane eller vindu >>Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Vise andre…
    2013 (engelsk)Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 46, nr 21, artikkel-id 215303Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Pulsed, ionized vapour fluxes, generated from high power impulse magnetron sputtering (HiPIMS) discharges, are employed to study the effects of time-domain and energetic bombardment on the nucleation and coalescence characteristics during Volmer–Weber growth of metal (Ag) films on amorphous (SiO2) substrates. In situ monitoring of the film growth, by means of wafer curvature measurements and spectroscopic ellipsometry, is used to determine the film thickness where a continuous film is formed. This thickness decreases from ~210 to ~140 Å when increasing the pulsing frequency for a constant amount of material deposited per pulse or when increasing the amount of material deposited per pulse and the energy of the film forming species for a constant pulsing frequency. Estimations of adatom lifetimes and the coalescence times show that there are conditions at which these times are within the range of the modulation of the vapour flux. Thus, nucleation and coalescence processes can be manipulated by changing the temporal profile of the vapour flux. We suggest that other than for elucidating the atomistic mechanisms that control pulsed growth processes, the interplay between the time scales for diffusion, coalescence and vapour flux pulsing can be used as a tool to determine characteristic surface diffusion and island coalescence parameters.

    sted, utgiver, år, opplag, sider
    Institute of Physics (IOP), 2013
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-95508 (URN)10.1088/0022-3727/46/21/215303 (DOI)000319116300009 ()
    Merknad

    Funding Agencies|Swedish Research Council|VR 621-2011-4280|COST Action Highly Ionized Pulsed Plasmas|MP0804|Linkoping University via the LiU Research Fellows program||.

    The previous status of the article was Manuscript and the working title was Time-domain and energetic bombardment effects on the nucleation and post-nucleation characteristics during none-quilibrium film synthesis.

    Tilgjengelig fra: 2013-07-05 Laget: 2013-07-05 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    4. Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    Åpne denne publikasjonen i ny fane eller vindu >>Unravelling the Physical Mechanisms that Determine Microstructural Evolution of Ultrathin Volmer-Weber Films
    2014 (engelsk)Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 116, nr 4, s. 044302-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The initial formation stages (i.e., island nucleation, island growth, and island coalescence) set characteristic length scales during growth of thin films from the vapour phase. They are, thus, decisive for morphological and microstructural features of films and nanostructures. Each of the initial formation stages has previously been well-investigated separately for the case of Volmer-Weber growth, but knowledge on how and to what extent each stage individually and all together affect the microstructural evolution is still lacking. Here we address this question using growth of Ag on SiO2 from pulsed vapour fluxes as a case study. By combining in situ growth monitoring, ex situ imaging and growth simulations we systematically study the growth evolution all the way from nucleation to formation of a continuous film and establish the effect of the vapour flux time domain on the scaling behaviour of characteristic growth transitions (elongation transition, percolation and continuous film formation). Our data reveal a pulsing frequency dependence for the characteristic film growth transitions, where the nominal transition thickness decreases with increasing pulsing frequency up to a certain value after which a steady-state behaviour is observed. The scaling behaviour is shown to result from differences in island sizes and densities, as dictated by the initial film formation stages. These differences are determined solely by the interplay between the characteristics of the vapour flux and time required for island coalescence to be completed. In particular, our data provide evidence that the steady-state scaling regime of the characteristic growth transitions is caused by island growth that hinders coalescence from being completed, leading to a coalescence-free growth regime.

    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-103920 (URN)10.1063/1.4890522 (DOI)000340710700078 ()
    Tilgjengelig fra: 2014-02-03 Laget: 2014-02-03 Sist oppdatert: 2018-01-11
    5. Origin of energetic Ar+ ions in high power impulse magnetron sputtering discharges
    Åpne denne publikasjonen i ny fane eller vindu >>Origin of energetic Ar+ ions in high power impulse magnetron sputtering discharges
    Vise andre…
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-105790 (URN)
    Tilgjengelig fra: 2014-04-07 Laget: 2014-04-07 Sist oppdatert: 2014-04-08
  • 6.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Nucleation and stress generation in thin films deposited with a pulsed energetic deposition flux2013Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis presents fundamental mechanisms of nucleation and early growth of and stress generation in thin polycrystalline metal films deposited using pulsed energetic deposition fluxes. The effects of a pulsed deposition flux and energetic bombardment on film nucleation was investigated using in situ stress measurements and in situ ellipsometry to determine the film thickness at which the films become continuous. Ag films where deposited using high power impulse magnetron sputtering (HiPIMS) in two series - one with constant low pulse power to minimize energetic bombardment while varying the pulse frequency and one with a constant pulse frequency while varying the pulse power, resulting in different amounts of energetic bombardment and different deposition rates - to separate the effects of a pulsed deposition flux and energetic bombardment. The thickness at which the film becomes continuous was found to decrease both with increasing pulse frequency and increasing pulse power. The effects of the increased energetic bombardment and deposition rate cannot be separated due to their coupling. Adatom lifetimes and the coalescence times for islands where calculated for different coverages and island sizes and compared to the time between pulses. It was found that the time between pulses was lower than the adatom lifetimes for certain conditions; this leads to an increase in the adatom density and therefore an increase of the nucleation density resulting in smaller thicknesses for the formation of continuous film. It was also found that the coalescence time for clusters becomes longer than the time between pulses, retarding the coalescence process; this leads to formation of long lived elongated clusters also resulting in a decrease of the thickness at which the films become continuous.

    Energetic bombardment during growth of Mo films using HiPIMS is found to result in large compressive stresses without the commonly observed defect induced associated lattice expansion seen when depositing films using energetic bombardment. This and a correlation between the magnitude of the compressive stress and the film density allow us to conclude that the compressive stress is generated by grain boundary densification. Two mechanisms leading to grain boundary densification and thus generation of compressive stresses are proposed.

    Delarbeid
    1. Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Åpne denne publikasjonen i ny fane eller vindu >>Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
    Vise andre…
    2013 (engelsk)Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 46, nr 21, artikkel-id 215303Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Pulsed, ionized vapour fluxes, generated from high power impulse magnetron sputtering (HiPIMS) discharges, are employed to study the effects of time-domain and energetic bombardment on the nucleation and coalescence characteristics during Volmer–Weber growth of metal (Ag) films on amorphous (SiO2) substrates. In situ monitoring of the film growth, by means of wafer curvature measurements and spectroscopic ellipsometry, is used to determine the film thickness where a continuous film is formed. This thickness decreases from ~210 to ~140 Å when increasing the pulsing frequency for a constant amount of material deposited per pulse or when increasing the amount of material deposited per pulse and the energy of the film forming species for a constant pulsing frequency. Estimations of adatom lifetimes and the coalescence times show that there are conditions at which these times are within the range of the modulation of the vapour flux. Thus, nucleation and coalescence processes can be manipulated by changing the temporal profile of the vapour flux. We suggest that other than for elucidating the atomistic mechanisms that control pulsed growth processes, the interplay between the time scales for diffusion, coalescence and vapour flux pulsing can be used as a tool to determine characteristic surface diffusion and island coalescence parameters.

    sted, utgiver, år, opplag, sider
    Institute of Physics (IOP), 2013
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-95508 (URN)10.1088/0022-3727/46/21/215303 (DOI)000319116300009 ()
    Merknad

    Funding Agencies|Swedish Research Council|VR 621-2011-4280|COST Action Highly Ionized Pulsed Plasmas|MP0804|Linkoping University via the LiU Research Fellows program||.

    The previous status of the article was Manuscript and the working title was Time-domain and energetic bombardment effects on the nucleation and post-nucleation characteristics during none-quilibrium film synthesis.

    Tilgjengelig fra: 2013-07-05 Laget: 2013-07-05 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    2. Atom insertion into grain boundaries and stress generation in physically vapor deposited films
    Åpne denne publikasjonen i ny fane eller vindu >>Atom insertion into grain boundaries and stress generation in physically vapor deposited films
    2013 (engelsk)Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, nr 5Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    We present evidence for compressive stress generation via atom insertion into grain boundaries in polycrystalline Mo thin films deposited using energetic vapor fluxes (<∼120 eV). Intrinsic stress magnitudes between −3 and +0.2 GPa are obtained with a nearly constant stress-free lattice parameter marginally larger (0.12%) than that of bulk Mo. This, together with a correlation between large compressive film stresses and high film densities, implies that the compressive stress is not caused by defect creation in the grains but by grain boundary densification. Two mechanisms for diffusion of atoms into grain boundaries and grain boundary densification are suggested.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2013
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98154 (URN)10.1063/1.4817669 (DOI)000322723000036 ()
    Merknad

    Funding Agencies|COST Action|MP0804|Linkoping University.

    The previous status of this article was Manuscript and the working title was Atomistic mechanisms leading to adatom insertion into grain boundaries and stress generation in physically vapor deposited films.

    Tilgjengelig fra: 2013-09-30 Laget: 2013-09-30 Sist oppdatert: 2017-12-06
  • 7.
    Magnfält, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Abadias, G
    University of Poitiers, France.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Atom insertion into grain boundaries and stress generation in physically vapor deposited films2013Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, nr 5Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present evidence for compressive stress generation via atom insertion into grain boundaries in polycrystalline Mo thin films deposited using energetic vapor fluxes (<∼120 eV). Intrinsic stress magnitudes between −3 and +0.2 GPa are obtained with a nearly constant stress-free lattice parameter marginally larger (0.12%) than that of bulk Mo. This, together with a correlation between large compressive film stresses and high film densities, implies that the compressive stress is not caused by defect creation in the grains but by grain boundary densification. Two mechanisms for diffusion of atoms into grain boundaries and grain boundary densification are suggested.

  • 8.
    Magnfält, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Elofsson, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Abadias, G
    Institut P', Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope, France.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates2013Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 46, nr 21, artikkel-id 215303Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pulsed, ionized vapour fluxes, generated from high power impulse magnetron sputtering (HiPIMS) discharges, are employed to study the effects of time-domain and energetic bombardment on the nucleation and coalescence characteristics during Volmer–Weber growth of metal (Ag) films on amorphous (SiO2) substrates. In situ monitoring of the film growth, by means of wafer curvature measurements and spectroscopic ellipsometry, is used to determine the film thickness where a continuous film is formed. This thickness decreases from ~210 to ~140 Å when increasing the pulsing frequency for a constant amount of material deposited per pulse or when increasing the amount of material deposited per pulse and the energy of the film forming species for a constant pulsing frequency. Estimations of adatom lifetimes and the coalescence times show that there are conditions at which these times are within the range of the modulation of the vapour flux. Thus, nucleation and coalescence processes can be manipulated by changing the temporal profile of the vapour flux. We suggest that other than for elucidating the atomistic mechanisms that control pulsed growth processes, the interplay between the time scales for diffusion, coalescence and vapour flux pulsing can be used as a tool to determine characteristic surface diffusion and island coalescence parameters.

  • 9.
    Magnfält, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Fillon, A.
    University of Poitiers, France; INSA Rennes, France.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Abadias, G.
    University of Poitiers, France.
    Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films2016Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, nr 5, s. 055305-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low. (C) 2016 AIP Publishing LLC.

  • 10.
    Magnfält, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Fillon, Amelié
    Institut P’, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS- ENSMA.
    Boyd, Robert D.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Abadias, Gregory
    Institut P’, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS- ENSMA.
    Atom insertion into grain boundaries generates compressive intrinsic stress in polycrystalline thin filmsManuskript (preprint) (Annet vitenskapelig)
  • 11.
    Magnfält, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Lundin, Daniel
    Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Universite Paris-Sud XI.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Minea, Tiberiu
    Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Universite Paris-Sud XI.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Origin of energetic Ar+ ions in high power impulse magnetron sputtering dischargesManuskript (preprint) (Annet vitenskapelig)
  • 12.
    Sarakinos, Kostas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elofsson, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Högberg, Hans
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Alling, Björn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Max Planck Institute Eisenforsch GmbH, Germany.
    Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system2016Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, nr 9, s. 095303-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x &gt;= similar to 0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x &lt;= similar to 0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that of Mo. The mechanisms suggested herein may be of relevance for explaining phase stability data in a number of metastable alloys, such as ternary transition metal-aluminum-nitride systems. (C) 2016 AIP Publishing LLC.

  • 13.
    Sarakinos, Kostas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Magnfält, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Elofsson, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lü, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Atomistic view on thin film nucleation and growth by using highly ionized and pulsed vapour fluxes2014Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 257, s. 326-332Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a brief review on the use of ionized and pulsed vapour fluxes, primarily generated by high power impulse magnetron sputtering (HiPIMS) discharges, as tools to gain atomistic understanding on film nucleation and growth. Two case studies are considered; the first case study concerns stress generation in polycrystalline films. It is highlighted that by using vapour fluxes of well-controlled ion content and ion energy and by studying the film microstructure and intrinsic stresses one can obtain experimental evidence for stress generation by insertion of film forming species in the grain boundaries. In the second case study it is discussed how the use of pulsed vapour fluxes with well controlled time domain can facilitate understanding of growth dynamics and microstructural evolution in thin films grown in three-dimensional (i.e., Volmer-Weber) fashion. Broader implications of the described research strategies for the surface science and surface engineering communities are highlighted and discussed.

1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf