Open this publication in new window or tab >>Show others...
2014 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 24, no 40, p. 6309-6316Article in journal (Refereed) Published
Abstract [en]
Organic photovoltaics are under intense development and significant focus has been placed on tuning the donor ionization potential and acceptor electron affinity to optimize open circuit voltage. Here, it is shown that for a series of regioregular-poly(3-hexylthiophene): fullerene bulk heterojunction (BHJ) organic photovoltaic devices with pinned electrodes, integer charge transfer states present in the dark and created as a consequence of Fermi level equilibrium at BHJ have a profound effect on open circuit voltage. The integer charge transfer state formation causes vacuum level misalignment that yields a roughly constant effective donor ionization potential to acceptor electron affinity energy difference at the donor-acceptor interface, even though there is a large variation in electron affinity for the fullerene series. The large variation in open circuit voltage for the corresponding device series instead is found to be a consequence of trap-assisted recombination via integer charge transfer states. Based on the results, novel design rules for optimizing open circuit voltage and performance of organic bulk heterojunction solar cells are proposed.
Place, publisher, year, edition, pages
Wiley-VCH Verlag, 2014
National Category
Physical Sciences Chemical Sciences
Identifiers
urn:nbn:se:liu:diva-112635 (URN)10.1002/adfm.201401513 (DOI)000344249900007 ()
Note
Funding Agencies|Swedish Energy Agency [34142-1]; European Commission [287594]; Academy of Finland [137093]; Swedish Research Council Linnaeus grant LiLi-NFM; Waldemar von Frenckell Foundation; Swedish Cultural Foundation in Finland; Advanced Functional Materials Center at Linkoping University
2014-12-082014-12-052017-12-05