liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arja, Katriann
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Multimodal Porphyrin-Based Conjugates: Synthesis and characterization for applications as amyloid ligands, photodynamic therapy agents and chiroptical materials2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Organic compounds that interact both with certain biological targets and display specific photophysical properties can be utilized as molecular tools to visualize and possibly effect disease related processes taking place in living organisms. In this regard, porphyrins are a class of naturally occurring molecules that possess intriguingly interesting photophysical properties where they can act as luminescent probes by emitting detectable light, as well as photosensitizers in the light mediated therapy called photodynamic therapy. In this thesis, the porphyrin structure has been synthetically combined with other molecule classes to achieve compounds with desirable multimodal characteristics.

    Firstly, luminescent conjugated oligothiophenes (LCOs) that have extensively, and with great success, been utilized as fluorescent ligands for amyloid formations, have been conjugated to porphyrins to render oligothiophene porphyrin hybrids (OTPHs) comprising two optically active modalities. When applied as fluorescent amyloidophilic dyes for visualization of amyloid-β (Aβ), one of the pathological hallmarks in Alzheimer’s disease, an enhanced optical assignment of distinct aggregated forms of Aβ was afforded.  Thus, properly functionalized OTPHs could give us more information about pathological processes underlying devastating disorders, such as Alzheimer’s disease. In addition, the OTPHs can be associated with synthetic peptides inducing peptide folding into certain three-dimensional helical structures giving rise to novel optically active materials.

    Secondly, this thesis also embraces porphyrins’ potential as photosensitizers in photodynamic therapy to kill cancer cells. Grounded on the prerequisites for an optimal photosensitizer, we designed porphyrin-based conjugates equipped with common carbohydrates for improved cancer cell selectivity and with a fluorinated glucose derivative, 2-fluoro 2-deoxy glucose, for advantageous metabolism in cancer cells. Furthermore, incorporation of a radioisotopic fluorine-18 atom into the glycoporphyrins could give the means for diagnostic use of the conjugates in positron emission tomography (PET).

    In order to tether together the above-mentioned molecular moieties in a controlled fashion, we developed a robust synthetic strategy for asymmetrical functionalization of porphyrin core. The method involves chlorosulfonation of this otherwise inert tetrapyrrolic structure, followed by alkynylation. Parallelly to amide coupling reactions, copper(I)-catalyzed alkyne azide cycloaddition is used for fast and high-yielding late-stage conjugations. Overall, this thesis demonstrates how combining different molecular moieties in synthetic organic chemistry yields novel molecules with combined and improved multimodal properties for biological and medicinal applications, guided by the design-by-function methodology.      

    List of papers
    1. Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand
    Open this publication in new window or tab >>Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand
    Show others...
    2013 (English)In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 34, no 9, p. 723-730Article in journal (Refereed) Published
    Abstract [en]

    Fluorescent probes identifying protein aggregates are of great interest, as deposition of aggregated proteins is associated with many devastating diseases. Here, we report that a fluorescent amyloid ligand composed of two distinct molecular moieties, an amyloidophilic pentameric oligothiophene and a porphyrin, can be utilized for spectral and lifetime imaging assessment of recombinant A 1-42 amyloid fibrils and A deposits in brain tissue sections from a transgenic mouse model with Alzheimers disease pathology. The enhanced spectral range and distinct lifetime diversity of this novel oligothiopheneporphyrin-based ligand allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye.

    Place, publisher, year, edition, pages
    Wiley-VCH Verlag, 2013
    Keywords
    oligothiophene, porphyrin, protein deposits, imaging, fluorescence
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-93385 (URN)10.1002/marc.201200817 (DOI)000318354500004 ()
    Note

    Funding Agencies|Swedish Research Council||Knut and Alice Wallenberg Foundation||Swedish Foundation for Strategic Research||European Union FP7 HEALTH (Project LUPAS)||LiU Neuroscience Center||ERC Starting Independent Researcher grant (Project: MUMID)||

    Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2018-08-24
    2. Synthesis and Characterization of Oligothiophene-Porphyrin-Based Molecules That Can Be Utilized for Optical Assignment of Aggregated Amyloid-beta Morphotypes
    Open this publication in new window or tab >>Synthesis and Characterization of Oligothiophene-Porphyrin-Based Molecules That Can Be Utilized for Optical Assignment of Aggregated Amyloid-beta Morphotypes
    2018 (English)In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 6, article id 391Article in journal (Refereed) Published
    Abstract [en]

    Molecular tools for fluorescent imaging of protein aggregates are essential for understanding the significance of these pathological hallmarks in proteopathic neurodegenerative diseases, such as Alzheimers disease. Here, we report the synthesis of a series of oligothiophene porphyrin hybrids, OTPHs, and the evaluation of these dyes for fluorescent imaging of beta-amyloid aggregates in tissue sections from a transgenic mouse model with Alzheimers disease pathology. The OTPHs proved to be successful for spectral and lifetime imaging assessment of protein deposits and our findings confirm that the enhanced spectral range and distinct lifetime diversity of these novel tools allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye. In addition, the chemical identity of the porphyrin moiety, as well as the spacing between the two optical active moieties, influenced the OTPHs performance for fluorescent assignment of the protein deposits. We foresee that our findings will aid in the chemical design of dyes that can be utilized as optical tools for studying the polymorphic nature of protein aggregates associated with proteopathic neurodegenerative diseases.

    Place, publisher, year, edition, pages
    FRONTIERS MEDIA SA, 2018
    Keywords
    oligothiophene; porphyrin; protein deposits; imaging; fluorescence
    National Category
    Biophysics
    Identifiers
    urn:nbn:se:liu:diva-151479 (URN)10.3389/fchem.2018.00391 (DOI)000443424100001 ()30234103 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council [621-2013-4754, 2016-00748]

    Available from: 2018-09-24 Created: 2018-09-24 Last updated: 2018-10-19
    3. Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents
    Open this publication in new window or tab >>Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents
    Show others...
    2018 (English)In: ChemistryOpen, ISSN 2191-1363, Vol. 7, no 7, p. 495-503Article in journal (Refereed) Published
    Abstract [en]

    Small molecules with modalities for a variety of imaging techniques as well as therapeutic activity are essential, as such molecules render opportunities to simultaneously conduct diagnosis and targeted therapy, so called theranostics. In this regard, glycoporphyrins have proven useful as theranostic agents towards cancer, as well as noncancerous conditions. Herein, the synthesis and characterization of heterobifunctional glycoconjugated porphyrins with two different sugar moieties, a common monosaccharide at three sites, and a 2-fluoro-2-deoxy glucose (FDG) moiety at the fourth site are presented. The fluoro-glycoconjugated porphyrins exhibit properties for multimodal imaging and photodynamic therapy, as well as specificity towards cancer cells. We foresee that our findings might aid in the chemical design of heterobifunctional glycoconjugated porphyrins that could be utilized as theranostic agents.

    Place, publisher, year, edition, pages
    Wiley-VCH Verlagsgesellschaft, 2018
    Keywords
    cancer; glycoporphyrins; imaging; photodynamic therapy; photosensitizers
    National Category
    Medicinal Chemistry
    Identifiers
    urn:nbn:se:liu:diva-150279 (URN)10.1002/open.201800020 (DOI)000440286200002 ()30003003 (PubMedID)2-s2.0-85051290816 (Scopus ID)
    Note

    Funding Agencies|Swedish Foundation for Strategic Research; Swedish Research Council

    Available from: 2018-08-17 Created: 2018-08-17 Last updated: 2019-04-01Bibliographically approved
  • 2.
    Arja, Katriann
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology. Linköping, .
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Protein Science. Linköping University, Faculty of Science & Engineering. Linköping, .
    Åslund, Alma
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Prokop, Stefan
    Charite, Germany .
    Heppner, Frank L.
    Charite, Germany .
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Lindgren, Mikael
    Norwegian University of Science and Technology, Norway .
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Protein Science. Linköping University, Faculty of Science & Engineering. Linköping, .
    Åslund, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, Faculty of Science & Engineering. Linköping, .
    Enhanced Fluorescent Assignment of Protein Aggregates by an Oligothiophene-Porphyrin-Based Amyloid Ligand2013In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 34, no 9, p. 723-730Article in journal (Refereed)
    Abstract [en]

    Fluorescent probes identifying protein aggregates are of great interest, as deposition of aggregated proteins is associated with many devastating diseases. Here, we report that a fluorescent amyloid ligand composed of two distinct molecular moieties, an amyloidophilic pentameric oligothiophene and a porphyrin, can be utilized for spectral and lifetime imaging assessment of recombinant A 1-42 amyloid fibrils and A deposits in brain tissue sections from a transgenic mouse model with Alzheimers disease pathology. The enhanced spectral range and distinct lifetime diversity of this novel oligothiopheneporphyrin-based ligand allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf