liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alarcon, E I
    et al.
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Vulesevic, B
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Argawal, A
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Ross, A
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Bejjani, P
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Podrebarac, J
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Ravichandran, Ranjithkumar
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Suuronen, E J
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine.2016In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, no 12, p. 6484-6489Article in journal (Refereed)
    Abstract [en]

    Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.

  • 2.
    Islam, Mohammad Mirazul
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Karolinska Institute, Sweden.
    Ravichandran, Ranjithkumar
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Olsen, D.
    FibroGen Inc, CA 94158 USA.
    Kozak Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Fagerholm, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
    Lee, Chyan-Jang
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology. Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Karolinska Institute, Sweden.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation2016In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 61, p. 55745-55749Article in journal (Refereed)
    Abstract [en]

    Extracellular matrix proteins like collagen promote regeneration as implants in clinical studies. However, collagens are large and unwieldy proteins, making small functional peptide analogs potentially ideal substitutes. Self-assembling collagen-like-peptides conjugated with PEG-maleimide were assembled into hydrogels. When tested pre-clinically as corneal implants in mini-pigs, they promoted cell and nerve regeneration, forming neo-corneas structurally and functionally similar to natural corneas.

  • 3.
    Khan, Farhan A.
    et al.
    Vienna University of Technology, Austria .
    Rabong, Constantin
    Vienna University of Technology, Austria .
    Jordis, Ulrich
    Vienna University of Technology, Austria .
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Surprising behavior of NXO-peptides toward the lithium hydroxide solvolysis2013In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 54, no 28, p. 3679-3682Article in journal (Refereed)
    Abstract [en]

    An unexpected rearrangement of NXO peptides was observed during solvolysis of the methyl ester using lithium hydroxide as the base. It was found that the NXO-compounds rearranged into semioxamazide derivatives in which the ester is derived from the alcohol used as the reaction solvent.

  • 4.
    Khan, Farhan A.
    et al.
    COMSATS Institute Informat Technology, Pakistan .
    Rabong, Constantin
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Jordis, Ulrich
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Surprising behavior of NXO-peptides toward the lithium hydroxide solvolysis (vol 54, pg 3679, 2013)2013Other (Refereed)
    Abstract [en]

    n/a

  • 5.
    Koh, Li Buay
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Islam, Mohammad Mirazul
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Swedish Nanoscience Center, Karolinska Institute, Stockholm , Sweden .
    Mitra, Debbie
    Ottawa Hospital Research Institute, University of Ottawa Eye Institute, ON, Canada.
    Noel, Christopher
    Ottawa Hospital Research Institute, University of Ottawa Eye Institute, ON, Canada.
    Merett, Kimberley
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Ottawa Hospital Research Institute, University of Ottawa Eye Institute, ON, Canada.
    Odorcic, Silvia
    Ottawa Hospital Research Institute, University of Ottawa Eye Institute, ON, Canada.
    Fagerholm, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
    Jackson, William Bruce
    Ottawa Hospital Research Institute, University of Ottawa Eye Institute, ON, Canada.
    Liedberg, Bo
    Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Swedish Nanoscience Center, Karolinska Institute, Stockholm, Sweden.
    Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes2013In: Journal of Functional Biomaterials, ISSN 2079-4983, E-ISSN 2079-4983, Vol. 4, no 3, p. 162-177Article in journal (Refereed)
    Abstract [en]

    A bi-functional epoxy-based cross-linker, 1,4-Butanediol diglycidyl ether (BDDGE), was investigated in the fabrication of collagen based corneal substitutes. Two synthetic strategies were explored in the preparation of the cross-linked collagen scaffolds. The lysine residues of Type 1 porcine collagen were directly cross-linked using l,4-Butanediol diglycidyl ether (BDDGE) under basic conditions at pH 11. Alternatively, under conventional methodology, using both BDDGE and 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as cross-linkers, hydrogels were fabricated under acidic conditions. In this latter strategy, Cu(BF4)2·XH2O was used to catalyze the formation of secondary amine bonds. To date, we have demonstrated that both methods of chemical cross-linking improved the elasticity and tensile strength of the collagen implants. Differential scanning calorimetry and biocompatibility studies indicate comparable, and in some cases, enhanced properties compared to that of the EDC/NHS controls. In vitro studies showed that human corneal epithelial cells and neuronal progenitor cell lines proliferated on these hydrogels. In addition, improvement of cell proliferation on the surfaces of the materials was observed when neurite promoting laminin epitope, IKVAV, and adhesion peptide, YIGSR, were incorporated. However, the elasticity decreased with peptide incorporation and will require further optimization. Nevertheless, we have shown that epoxy cross-linkers should be further explored in the fabrication of collagen-based hydrogels, as alternatives to or in conjunction with carbodiimide cross-linkers.

  • 6.
    Lee, Chyan-Jang
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Buznyk, Oleksiy
    Filatov Institute of Eye Diseases and Tissue Therapy, Odessa, Ukraine .
    Kuffova, Lucia
    University of Aberdeen, Scotland .
    Rajendran, Vijayalakshmi
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. University of Aberdeen, Scotland.
    Forrester, John V.
    University of Aberdeen, Scotland.
    Phopase, Jaywant
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Islam, Mohammad Mirazul
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Skog, Mårten
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Ahlqvist, Jenny
    Vironova AB, Stockholm, Sweden.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy2014In: Translational Vision Science & Technology, ISSN 2164-2591, Vol. 3, no 3, p. 1-14Article in journal (Refereed)
    Abstract [en]

    Purpose: To evaluate the potential utility of collagen-based corneal implants with anti?Herpes Simplex Virus (HSV)-1 activity achieved through sustained release of LL-37, from incorporated nanoparticles, as compared with cell-based delivery from model human corneal epithelial cells (HCECs) transfected to produce endogenous LL-37. Methods: We tested the ability of collagen-phosphorylcholine implants to tolerate the adverse microenvironment of herpetic murine corneas. Then, we investigated the efficacy of LL-37 peptides delivered through nanoparticles incorporated within the corneal implants to block HSV-1 viral activity. In addition, LL-37 complementary DNA (cDNA) was transferred into HCECs to confer viral resistance, and their response to HSV-1 infection was examined. Results: Our implants remained in herpetic murine corneas 7 days longer than allografts. LL-37 released from the implants blocked HSV-1 infection of HCECs by interfering with viral binding. However, in pre-infected HCECs, LL-37 delayed but could not prevent viral spreading nor clear viruses from the infected cells. HCECs transfected with the LL-37 expressed and secreted the peptide. Secreted LL-37 inhibited viral binding in vitro but was insufficient to protect cells completely from HSV-1 infection. Nevertheless, secreted LL-37 reduced both the incidence of plaque formation and plaque size. Conclusion: LL-37 released from composite nanoparticle-hydrogel corneal implants and HCEC-produced peptide, both showed anti?HSV-1 activity by blocking binding. However, while both slowed down virus spread, neither was able on its own to completely inhibit the viruses. Translational Relevance: LL-37 releasing hydrogels may have potential utility as corneal substitutes for grafting in HSV-1 infected corneas, possibly in combination with LL-37 producing therapeutic cells.

  • 7.
    Poblete, Horacio
    et al.
    Kansas State University, KS 66506 USA; Kansas State University, KS 66506 USA.
    Agarwal, Anirudh
    University of Ottawa, Canada.
    Thomas, Suma S.
    University of Victoria, Canada.
    Bohne, Cornelia
    University of Victoria, Canada.
    Ravichandran, Ranjithkumar
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Comer, Jeffrey
    Kansas State University, KS 66506 USA; Kansas State University, KS 66506 USA.
    Alarcon, Emilio I.
    University of Ottawa, Canada; University of Ottawa, Canada.
    New Insights into Peptide-Silver Nanoparticle Interaction: Deciphering the Role of Cysteine and Lysine in the Peptide Sequence2016In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 1, p. 265-273Article in journal (Refereed)
    Abstract [en]

    We studied the interaction of four new pentapeptides with spherical silver nanoparticles. Our findings indicate that the combination of the thiol in Cys and amines in Lys/Arg residues is critical to providing stable protection for the silver surface. Molecular simulation reveals the atomic scale interactions that underlie the observed stabilizing effect of these peptides, while yielding qualitative agreement with experiment for ranking the affinity of the four pentapeptides for the silver surface.

  • 8.
    Rabong, Constantin
    et al.
    Vienna University of Technology, Austria .
    Schuster, Christoph
    University of Vienna, Austria .
    Liptaj, Tibor
    Slovak University of Technology Bratislava, Slovakia .
    Pronayova, Nadezda
    Slovak University of Technology Bratislava, Slovakia .
    Delchev, Vassil B.
    Paisij Hilendarski University of Plovdiv, Bulgaria .
    Jordis, Ulrich
    Vienna University of Technology, Austria .
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    NXO beta structure mimicry: an ultrashort turn/hairpin mimic that folds in water2014In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, no 41, p. 21351-21360Article in journal (Refereed)
    Abstract [en]

    We report the first application of NXO-pseudopeptides for beta-turn mimicry. Incorporating the proline-derived NProO peptidomimetic building block, a minimal tetrapeptide beta-hairpin mimic has been designed, synthesized and its solution structure elucidated. Emulating a natural proline-glycine beta-turn, evidence from NMR, molecular modeling and CD suggests the formation of two rapidly interconverting hairpin folds in water, methanol and dimethyl-sulfoxide at room temperature, displaying the proline nitrogen amide bond in either cis or trans arrangement. The NProO-modified hairpin features peptidic backbone dihedrals phi, Psi characteristic of natural proline-containing turns composed of alpha-amino acids only. Taken together, the observed folding behavior and inherently high designability render the NProO motif a building block for beta-structure elaboration in aqueous medium.

  • 9.
    Ravichandran, Ranjithkumar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic2014In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 2, no 48, p. 8466-8478Article in journal (Refereed)
    Abstract [en]

    Peptides that self-assemble into well-defined nanofibrous networks provide a prominent alternative to traditional biomaterials for fabricating scaffolds for use in regenerative medicine and other biomedical applications. Such scaffolds can be generated by decorating a peptide backbone with other bioactives such as cell specific adhesion peptides, growth factors and enzyme cleavable sequences. They can be designed to mimic the three-dimensional (3D) structural features of native ECM and can therefore also provide insight into the ECM-cell interactions needed for development of scaffolds that can serve as regeneration templates for specific target tissues or organs. This review highlights the potential application of self-assembling peptides in regenerative medicine.

  • 10.
    Ravichandran, Ranjithkumar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Islam, M. M.
    Karolinska Institute, Sweden; .
    Alarcon, E. I.
    University of Ottawa, Canada; .
    Samanta, Ayan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wang, S.
    Uppsala University, Sweden.
    Lundström, Patrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hilborn, J.
    Uppsala University, Sweden.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications2016In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 4, no 2, p. 318-326Article in journal (Refereed)
    Abstract [en]

    In this study, we derivatized type I collagen without altering its triple helical conformation to allow for facile hydrogel formation via the Michael addition of thiols to methacrylates without the addition of other crosslinking agents. This method provides the flexibility needed for the fabrication of injectable hydrogels or pre-fabricated implantable scaffolds, using the same components by tuning the modulus from Pa to kPa. Enzymatic degradability of the hydrogels can also be easily fine-tuned by variation of the ratio and the type of the crosslinking component. The structural morphology reveals a lamellar structure mimicking native collagen fibrils. The versatility of this material is demonstrated by its use as a pre-fabricated substrate for culturing human corneal epithelial cells and as an injectable hydrogel for 3-D encapsulation of cardiac progenitor cells.

  • 11.
    Ron-Doitch, Sapir
    et al.
    Hebrew University of Jerusalem, Israel.
    Sawodny, Beate
    Fraunhofer IGB, Germany.
    Kuehbacher, Andreas
    Fraunhofer IGB, Germany.
    Nordling David, Mirjam M.
    Hebrew University of Jerusalem, Israel.
    Samanta, Ayan
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Burger-Kentischer, Anke
    Fraunhofer IGB, Germany.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Golomb, Gershon
    Hebrew University of Jerusalem, Israel.
    Rupp, Steffen
    Fraunhofer IGB, Germany.
    Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV2016In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 229, p. 163-171Article in journal (Refereed)
    Abstract [en]

    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganisms plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8 +/- 10.1 nm, shelf-life stability of N1 year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (N20 mu M), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400 mu M). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. (C) 2016 Elsevier B.V. All rights reserved.

  • 12.
    Vignoni, Mariana
    et al.
    University of Ottawa, Canada.
    de Alwis Weerasekera, Hasitha
    University of Ottawa, Canada .
    Simpson, Madeline J.
    University of Ottawa, Canada .
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Mah, Thien-Fah
    University of Ottawa, Canada .
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Alarcon, Emilio I.
    University of Ottawa, Canada .
    Scaiano, Juan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control2014In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, no 11, p. 5725-5728Article in journal (Refereed)
    Abstract [en]

    Capping silver nanoparticles with LL37 peptide eradicates the anti-proliferative effect of silver on primary skin cells, but retains the bactericidal properties of silver nanoparticles with activities comparable to silver nitrate or silver sulfadiazine. In addition, LL37 capped silver nanoparticles have anti-biofilm formation activity.

  • 13.
    Wickham, Abeni M.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Islam, Mohammad Mirazul
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Karolinska Institutet, Stockholm, Sweden.
    Mondal, Debasish
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Sadhu, Veera
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Tamás, Éva
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Polisetti, Naresh
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Richter-Dahlfors, Agneta
    Karolinska Institutet, Stockholm, Sweden.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology. Nanyang Technological University, Singapore.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Karolinska Institutet, Stockholm, Sweden.
    Polycaprolactone–thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells2014In: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 102, no 7, p. 1553-1561Article in journal (Refereed)
    Abstract [en]

    The myocardium is unable to regenerate itself after infarct, resulting in scarring and thinning of the heart wall. Our objective was to develop a patch to buttress and bypass the scarred area, while allowing regeneration by incorporated cardiac stem/progenitor cells (CPCs). Polycaprolactone (PCL) was fabricated as both sheets by solvent casting, and fibrous meshes by electrospinning, as potential patches, to determine the role of topology in proliferation and phenotypic changes to the CPCs. Thiophene-conjugated carbon nanotubes (T-CNTs) were incorporated to enhance the mechanical strength. We showed that freshly isolated CPCs from murine hearts neither attached nor spread on the PCL sheets, both with and without T-CNT. As electrospun meshes, however, both PCL and PCL/T-CNT supported CPC adhesion, proliferation, and differentiation. The incorporation of T-CNT into PCL resulted in a significant increase in mechanical strength but no morphological changes to the meshes. In turn, proliferation, but not differentiation, of CPCs into cardiomyocytes was enhanced in T-CNT containing meshes. We have shown that changing the topology of PCL, a known hydrophobic material, dramatically altered its properties, in this case, allowing CPCs to survive and differentiate. With further development, PCL/T-CNT meshes or similar patches may become a viable strategy to aid restoration of the postmyocardial infarction myocardium.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf