liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Higgins, Michael
    University of Wollongong, New South Wales, Australia.
    Wallace, Gordon
    University of Wollongong, New South Wales, Australia.
    Rafat, Mehrdad
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Electroactive Biomaterial Solutions for Tissue Engineering2013Conference paper (Other academic)
    Download full text (pdf)
    Electroactive Biomaterials Solutions for Tissue Engineering
  • 2.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Kozak Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Medicine and Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Bioelectronic nanofibre scaffolds for tissue engineering and whole-cell biosensors2014Conference paper (Refereed)
  • 3.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Kozak Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Influence of conductive polymer doping on the viability of cardiac progenitor cells2014In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 2, no 24, p. 3860-3867Article in journal (Refereed)
    Abstract [en]

    Cardiac tissue engineering via the use of stem cells is the future for repairing impaired heart function that results from a myocardial infarction. Developing an optimised platform to support the stem cells is vital to realising this, and through utilising new smart materials such as conductive polymers we can provide a multi-pronged approach to supporting and stimulating the stem cells via engineered surface properties, electrical, and electromechanical stimulation. Here we present a fundamental study on the viability of cardiac progenitor cells on conductive polymer surfaces, focusing on the impact of surface properties such as roughness, surface energy, and surface chemistry with variation of the polymer dopant molecules. The conductive polymer materials were shown to provide a viable support for both endothelial and cardiac progenitor cells, while the surface energy and roughness were observed to influence viability for both progenitor cell types. Characterising the interaction between the cardiac progenitor cells and the conductive polymer surface is a critical step towards optimising these materials for cardiac tissue regeneration, and this study will advance the limited knowledge on biomaterial surface interactions with cardiac cells.

    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 4.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Kozak Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Medicine and Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Smart Electroactive Scaffolds for Cardiac Tissue Regeneration2014Conference paper (Refereed)
  • 5.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rafat, Mehrdad
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Electroactive scaffolds for cardiac tissue regeneration2013Conference paper (Other academic)
    Abstract [en]

    Myocardial Infarction (MI), commonly known as a heart attack, is the interruption of blood supply to a part of the heart, causing heart cells to die. In order to restore function by-pass surgery or ultimately heart transplantation is needed. However, due to the shortage of organ donors and complications associated with immune suppressive treatments, development of new strategies to help regenerate the injured heart is necessary. Stem cell therapy can be used to repair necrotic heart tissue and achieve myocardial regeneration. This research is focused on developing implantable electroactive fiber scaffolds that will increase the differentiation ratio of mesenchymal stem cells into cardiomyocytes and thus increase the formation of novel cardiac tissue to repair or replace the damaged cardiac tissue after MI. Composite nanofibrous scaffold of poly(dl-lactide-co-glycolide) (PLGA) have been coated with biodoped polypyrrole to create an electroactive fiber scaffold, with controllable fiber dimensions and alignment. The electrical properties of the polymers are an integral factor in creating these 'intelligent' 3-D materials; not only does the inherent conductivity provide a platform for electrical stimulation, but the ionic actuation of the polymer can also provide mechanical stimulation to the seeded cells. The biocompatibility of the polymer, PLGA scaffolds, and coated PLGA scaffolds has been investigated using primary cardiovascular progenitor cells.

  • 6.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Medicine and Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Actuating electroactive scaffolds for cardiac tissue regeneration2014Conference paper (Refereed)
  • 7.
    Gelmi, Amy
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Jiabin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Cieslar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Los, Marek
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rafat, Mehrdad
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Medicine and Health Sciences.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Electroactive polymer scaffolds for cardiac tissue engineering2015In: Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) 2015 / [ed] Bar-Cohen, SPIE - International Society for Optical Engineering, 2015, Vol. 9430, p. 94301T-1-94301T-7Conference paper (Refereed)
    Abstract [en]

    By-pass surgery and heart transplantation are traditionally used to restore the heart’s functionality after a myocardial Infarction (MI or heart attack) that results in scar tissue formation and impaired cardiac function. However, both procedures are associated with serious post-surgical complications. Therefore, new strategies to help re-establish heart functionality are necessary. Tissue engineering and stem cell therapy are the promising approaches that are being explored for the treatment of MI. The stem cell niche is extremely important for the proliferation and differentiation of stem cells and tissue regeneration. For the introduction of stem cells into the host tissue an artificial carrier such as a scaffold is preferred as direct injection of stem cells has resulted in fast stem cell death. Such scaffold will provide the proper microenvironment that can be altered electronically to provide temporal stimulation to the cells. We have developed an electroactive polymer (EAP) scaffold for cardiac tissue engineering. The EAP scaffold mimics the extracellular matrix and provides a 3D microenvironment that can be easily tuned during fabrication, such as controllable fibre dimensions, alignment, and coating. In addition, the scaffold can provide electrical and electromechanical stimulation to the stem cells which are important external stimuli to stem cell differentiation. We tested the initial biocompatibility of these scaffolds using cardiac progenitor cells (CPCs), and continued onto more sensitive induced pluripotent stem cells (iPS). We present the fabrication and characterisation of these electroactive fibres as well as the response of increasingly sensitive cell types to the scaffolds.

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf