liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Cook, Kevin M.
    Naval Air Syst Command, MD 20670 USA.
    Naguib, Michael
    Oak Ridge National Lab, TN 37831 USA.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gogotsi, Yury
    Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA.
    X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 362, p. 406-417Article in journal (Refereed)
    Abstract [en]

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti-3 C2Tx,Ti3CNTx, Nb2CTx and Nb4C3Tx where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, O, OH and F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications. Published by Elsevier B.V.

  • 2.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering and 3A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, USA.
    Cook, Kevin M.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnuson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Penn, PA 19104 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gogotsi, Yury
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
    X-ray Photoelectron Spectroscopy Characterization of Two-Dimensional Titanium Metal Carbides (MXenes)2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Herein, we report X-ray Photoelectron Spectroscopy (XPS) analysis for cold pressed exfoliated 2D nanocrystals of transition metal carbides, MXenes. MXenes are a recently discovered family of 2D materials produced by selective chemical etching of the A element from MAX phases which are ternary metal carbides and nitrides. The latter has the formula of Mn+1AXn, where M is an early transition metal, A is an A-group element, and X is C and/or N. This study is a comparison between two MXenes, Ti3C2Tx and Ti2CTx, where Tx stands for surface termination groups such as –O, –OH, and –F. Ti3C2Tx and Ti2CTx were prepared by immersion of Ti3AlC2 and Ti2AlC powders in 50% conc. HF. A thorough XPS analysis was performed through peak fitting of high resolution XPS spectra and valence band, VB, spectra analysis. The effect of Ar sputtering as well as the number of layers n was the primarily interest of this study. According to the peak fitting analysis, both phases contain the following species, Ti–C, C–C, Ti–F, Ti–O and Ti–OH resulting in the following chemical formulas: Ti3C2(OH)x(O)y(F)z and Ti2C(OH)x(O)y(F)z. Comparing the VB spectra with the DOS calculations show the valance band spectra is actually a mixture of MXene with various terminations of OH, O and F. Before Ar+ sputtering both phases show a large percentage of fluorinated-TiO2 which is due to MXene surface oxidation as well as CHx, C-O and COO groups arising from either surface contaminations or due to drying the etched powders in ethanol after washing the powder of the HF acid. According to the VB spectra, it is shown that the fluorinated TiO2 is actually a mixture of anatase and rutile. The number of layers, n, also plays a role; the lower n, the more the MXene is prone to oxidation.

  • 3.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Univ Penn, PA 19104 USA Drexel Univ, PA 19104 USA.
    Lukatskaya, Maria R.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Cook, Kevin M.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Smith, Cole R.
    University of Penn, PA 19104 USA .
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    May, Steven J.
    University of Penn, PA 19104 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gogotsi, Yury
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films2014In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 26, no 7, p. 2374-2381Article in journal (Refereed)
    Abstract [en]

    Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of similar to 1 x 1 cm(2) Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit similar to 90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to similar to 100 K. Below 100 K, the films resistivity increases with decreasing temperature and they exhibit negative magnetoresistance-both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.

  • 4.
    Hu, C.
    et al.
    Drexel University, PA 19104 USA.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Drexel University, PA 19104 USA.
    Sun, L.
    Chinese Academic Science, Peoples R China.
    Zhang, J.
    Chinese Academic Science, Peoples R China.
    Yang, J.
    Drexel University, PA 19104 USA.
    Anasori, B.
    Drexel University, PA 19104 USA.
    Wang, J.
    Chinese Academic Science, Peoples R China.
    Sakka, Y.
    National Institute Mat Science, Japan.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Drexel University, PA 19104 USA.
    Mo2Ga2C: a new ternary nanolaminated carbide2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 30, p. 6560-6563Article in journal (Refereed)
    Abstract [en]

    We report the discovery of a new hexagonal Mo2Ga2C phase, wherein two Ga layers - instead of one - are stacked in a simple hexagonal arrangement in between Mo2C layers. It is reasonable to assume this compound is the first of a larger family.

  • 5.
    Karlsson, Linda
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania, United States.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania, United States.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets2015In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 8, p. 4955-4960Article in journal (Refereed)
    Abstract [en]

    The properties of two-dimensional (2D) materials depend strongly on the chemical and electrochemical activity of their surfaces. MXene, one of the most recent additions to 2D materials, shows great promise as an energy storage material. In the present investigation, the chemical and structural properties of individual Ti3C2 MXene sheets with associated surface groups are investigated at the atomic level by aberration corrected STEM-EELS. The MXene sheets are shown to exhibit a nonuniform coverage of O-based surface groups which locally affect the chemistry. Additionally, native point defects which are proposed to affect the local surface chemistry, such as oxidized titanium adatoms (TiOx), are identified and found to be mobile.

  • 6.
    Lai, Chung-Chuan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, O.
    Nucl Research Centre Negev, Israel.
    Caspi, E. N.
    Nucl Research Centre Negev, Israel.
    Ozeri, O.
    Soreq Nucl Research Centre, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 99, p. 157-164Article in journal (Refereed)
    Abstract [en]

    Following our recent discovery of a new nanolaminated carbide, Mo2Ga2C, we herein present a detailed structural and chemical analysis of this phase based on ab initio calculations, X-ray photoelectron spectroscopy, high resolution scanning transmission electron microscopy, and neutron powder diffraction. Calculations suggest an energetically and dynamically stable structure for C in the octahedral sites between the Mo layers, with Ga bilayers - stacked in a simple hexagonal arrangement - between the Mo2C layers. The predicted elastic properties are below those of the related nanolaminate Mo2GaC. The predicted structure, including lattice parameters and atomic positions, is experimentally confirmed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 7.
    Lapauw, T.
    et al.
    Katholieke University of Leuven, Belgium; CEN SCK, Belgium.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Cabioch, T.
    University of Poitiers, France.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Lambrinou, K.
    CEN SCK, Belgium.
    Vleugels, J.
    Katholieke University of Leuven, Belgium.
    Synthesis of the novel Zr3AlC2 MAX phase2016In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 36, no 3, p. 943-947Article in journal (Refereed)
    Abstract [en]

    Herein we report, for the first time, on the synthesis and structural characterization of the Zr-based MAX phase, Zr3AlC2, fabricated by reactive hot pressing of ZrH2, Al, and C powders. The crystal structure of Zr3AlC2 was determined by X-ray diffraction and high resolution transmission electron microscopy to be the hexagonal space group P63/mmc. The a and c lattice parameters are 3.33308(6)angstrom and 19.9507(3)angstrom, respectively. The samples include the secondary phases ZrC and Zr-Al intermetallics as confirmed by quantitative electron probe microanalysis. The Vickers hardness, using a force of 30 N, was measured to be 4.4 +/- 0.4 GPa. (C) 2015 Elsevier Ltd. All rights reserved.

  • 8.
    Lapauw, T.
    et al.
    Katholieke University of Leuven, Belgium; CEN SCK, Belgium.
    Lambrinou, K.
    CEN SCK, Belgium.
    Cabioch, T.
    University of Poitiers, France.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pesach, A.
    Nucl Research Centre Negev, Israel.
    Rivin, O.
    Nucl Research Centre Negev, Israel.
    Ozeri, O.
    Soreq Nucl Research Centre, Israel.
    Caspi, E. N.
    Nucl Research Centre Negev, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Vleugels, J.
    Katholieke University of Leuven, Belgium.
    Synthesis of the new MAX phase Zr2AlC2016In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 36, no 8, p. 1847-1853Article in journal (Refereed)
    Abstract [en]

    This study reports on the first experimental evidence of the existence of the Zr2AlC MAX phase, synthesised by means of reactive hot pressing of a ZrH2, Al and C powder mixture. The crystal structure of this compound was investigated by X-ray and neutron diffraction. The lattice parameters were determined and confirmed by high-resolution transmission electron microscopy. The effect of varying the synthesis temperature was investigated, indicating a relatively narrow temperature window for the synthesis of Zr2AlC. ZrC was always present as a secondary phase by hot pressing in the 1475-1575 degrees C range.

  • 9.
    Meshkian, Rahele
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C2015In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 108, p. 147-150Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis of a two-dimensional transition metal carbide, Mo2C, (MXene) obtained by immersing Mo2Ga2C thin films in hydrofluoric acid. Experimental evidences for neither synthesis of a Mo-based MXene nor selective etching of Ga from an atomic nanolaminate have previously been presented. MXene formation is verified through X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. This discovery unlocks new potential applications for Mo-based MXenes in a host of applications, from thermoelectrics to catalysis and energy storage.

  • 10.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Moon, E. J.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Yan, M.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Anasori, B.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    May, S. J.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Barsoum, M. W.
    Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Solid Solubility and Magnetism upon Mn Incorporation in the Bulk Ternary Carbides Cr2AlC and Cr2GaC2015In: Materials Research Letters, ISSN 2166-3831, Vol. 3, no 1, p. 16-22Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the bulk synthesis of (Cr1-xMnx)(2)AlC and (Cr1-yMny)(2)GaC MAX phases. Scanning electron and transmission electron microscopy, in combination with energy-dispersive X-ray spectroscopy performed locally on MAX phase grains, revealed x and y to be 0.06 (3 at%) and 0.3 (15 at%), respectively. The introduction of Mn into the structure did not result in appreciable changes in the c-lattice constants. Vibrating sample magnetometry measurements suggest that bulk (Cr0.7Mn0.3)(2)GaC may be magnetic.

  • 11.
    Ren, Chang E.
    et al.
    Drexel University, USA.
    Zhao, Meng-Qiang
    Drexel University, USA.
    Makaryan, Taron
    Drexel University, USA.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, USA.
    Boota, Muhammad
    Drexel University, USA.
    Kota, Sankalp
    Drexel University, USA.
    Anasori, Babak
    Drexel University, USA.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, USA.
    Gogotsi, Yury
    Drexel University, USA.
    Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage2016In: CHEMELECTROCHEM, ISSN 2196-0216, Vol. 3, no 5, p. 689-693Article in journal (Refereed)
    Abstract [en]

    Herein we develop a chemical etching method to produce porous two-dimensional (2D) Ti3C2Tx MXenes at room temperature in aqueous solutions. The as-produced porous Ti3C2Tx (p-Ti3C2Tx) have larger specific surface areas and more open structures than their pristine counterparts, and can be fabricated into flexible films with, or without, the addition of carbon nanotubes (CNTs). The as-fabricated p-Ti3C2Tx/CNT films showed significantly improved lithium ion storage capabilities compared to pristine Ti3C2Tx based films, with a very high capacity of approximate to 1250 mAhg(-1) at 0.1 C, excellent cycling stability, and good rate performance (330 mAhg(-1) at 10 C). Using the same chemical etching method, we also made porous Nb2CTx and V2CTx MXenes. Therefore, this study provides a simple, yet effective, procedure to introduce pores into MXenes and possibly other 2D sheets that in turn, can enhance their electrochemical properties.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf