liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dasu, Alexandru
    et al.
    The Skandion Clinic, Uppsala, Sweden.
    Flejmer, Anna M.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. The Skandion Clinic, Uppsala, Sweden.
    Edvardsson, Anneli
    Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
    Witt Nyström, Petra
    The Skandion Clinic, Uppsala, Sweden.
    Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy2018In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 52, p. 81-85Article in journal (Refereed)
    Abstract [en]

    Proton therapy has shown potential for reducing doses to normal tissues in breast cancer radiotherapy. However data on the impact of protons when including internal mammary nodes (IMN) in the target for breast radiotherapy is comparatively scarce. This study aimed to evaluate normal tissue doses when including the IMN in regional RT with scanned proton beams, with and without respiratory gating. The study cohort was composed of ten left-sided breast patients CT-scanned during enhanced inspiration gating (EIG) and free-breathing (FB). Proton plans were designed for the target including or excluding the IMN. Targets and organs-at-risk were delineated according to RTOG guidelines. Comparison was performed between dosimetric parameters characterizing target coverage and OAR radiation burden. Statistical significance of differences was tested using a paired, two-tailed Student’s t-test. Inclusion of the IMN in the target volume led to a small increase of the cardiopulmonary burden. The largest differences were seen for the ipsilateral lung where the mean dose increased from 6.1 to 6.6 Gy (RBE) (P < 0.0001) in FB plans and from 6.9 to 7.4 Gy (RBE) (P = 0.003) in EIG plans. Target coverage parameters were very little affected by the inclusion of IMN into the treatment target. Radiotherapy with scanned proton beams has the potential of maintaining low cardiovascular burden when including the IMN into the target, irrespective of whether respiratory gating is used or not.

  • 2.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Edvardsson, Anneli
    Lund University, Sweden.
    Dohlmar, Frida
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Josefsson, Dan
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Nilsson, Mats
    Futurum - Academy for Health and Care, Jönköping, Sweden.
    Witt Nyström, Petra
    Uppsala University Hospital, Sweden.
    Dasu, Alexandru
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy2016In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 55, no 5, p. 577-583Article in journal (Refereed)
    Abstract [en]

    Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating.

    Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student’s t-test.

    Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to left anterior descending artery (LAD) were significantly lower (p<0.05) with protons in comparison with photons.

    Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.

  • 3.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Witt Nyström, Petra
    Uppsala University Hospital.
    Dohlmar, Frida
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Josefsson, Dan
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Dasu, Alexandru
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Potential benefit of scanned proton beam versus photons as adjuvant radiation therapy in breast cancer2015In: International Journal of Particle Therapy, ISSN 2331-5180, Vol. 1, no 4, p. 845-855Article in journal (Refereed)
    Abstract [en]

    Purpose: To investigate the feasibility of using scanned proton beams as adjuvant radiation therapy for breast cancer. Long-term cardiopulmonary complications may worsen the quality of life and reduce the positive contribution of radiation therapy, which has been known to improve long-term control of locoregional disease as well as the long-term survival for these patients.

    Materials and Methods: Ten patients with stage I-III cancer (either after mastectomy or lumpectomy, left- or right-sided) were included in the study. The patients were identified from a larger group where dose heterogeneity in the target and/or hotspots in the normal tissues qualified them for irregular surface compensator planning with photons. The patients underwent planning with 2 scanned proton beam planning techniques, single-field uniform dose and intensity-modulated proton therapy, and the results were compared with those from irregular surface compensator. All volumes of interest were delineated and reviewed by experienced radio-oncologists. The patients were prescribed 50 GyRBE in 25 fractions. Dosimetric parameters of interest were compared with a paired, 2-tailed Student t test.

    Results: The proton plans showed comparable or better target coverage than the original photon plans. There were also large reductions with protons in mean doses to the heart (0.2 versus 1.3 GyRBE), left anterior descending artery (1.4 versus 6.4 GyRBE), and the ipsilateral lung (6.3 versus 7.7 GyRBE). This reduction is important from the point of view of the quality of life of the patients after radiation therapy. No significant differences were found between single-field uniform dose and intensity-modulated proton therapy plans.

    Conclusion: Spot scanning technique with protons may improve target dose homogeneity and further reduce doses to the organs at risk compared with advanced photon techniques. The results from this study indicate a potential for protons as adjuvant radiation therapy in breast cancer and a further step toward the individualization of treatment based on anatomic and comorbidity characteristics.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf