liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alarcon, E I
    et al.
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Vulesevic, B
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Argawal, A
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Ross, A
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Bejjani, P
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Podrebarac, J
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Ravichandran, Ranjithkumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Suuronen, E J
    Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada.
    Griffith, May
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine.2016Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, nr 12, s. 6484-6489Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.

  • 2.
    Islam, Mohammad Mirazul
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Karolinska Institute, Sweden.
    Ravichandran, Ranjithkumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Olsen, D.
    FibroGen Inc, CA 94158 USA.
    Kozak Ljunggren, Monika
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Fagerholm, Per
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Ögonkliniken US/LiM.
    Lee, Chyan-Jang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för klinisk och experimentell medicin. Linköpings universitet, Medicinska fakulteten.
    Griffith, May
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Karolinska Institute, Sweden.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation2016Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, nr 61, s. 55745-55749Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Extracellular matrix proteins like collagen promote regeneration as implants in clinical studies. However, collagens are large and unwieldy proteins, making small functional peptide analogs potentially ideal substitutes. Self-assembling collagen-like-peptides conjugated with PEG-maleimide were assembled into hydrogels. When tested pre-clinically as corneal implants in mini-pigs, they promoted cell and nerve regeneration, forming neo-corneas structurally and functionally similar to natural corneas.

  • 3.
    Poblete, Horacio
    et al.
    Kansas State University, KS 66506 USA; Kansas State University, KS 66506 USA.
    Agarwal, Anirudh
    University of Ottawa, Canada.
    Thomas, Suma S.
    University of Victoria, Canada.
    Bohne, Cornelia
    University of Victoria, Canada.
    Ravichandran, Ranjithkumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Comer, Jeffrey
    Kansas State University, KS 66506 USA; Kansas State University, KS 66506 USA.
    Alarcon, Emilio I.
    University of Ottawa, Canada; University of Ottawa, Canada.
    New Insights into Peptide-Silver Nanoparticle Interaction: Deciphering the Role of Cysteine and Lysine in the Peptide Sequence2016Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, nr 1, s. 265-273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We studied the interaction of four new pentapeptides with spherical silver nanoparticles. Our findings indicate that the combination of the thiol in Cys and amines in Lys/Arg residues is critical to providing stable protection for the silver surface. Molecular simulation reveals the atomic scale interactions that underlie the observed stabilizing effect of these peptides, while yielding qualitative agreement with experiment for ranking the affinity of the four pentapeptides for the silver surface.

  • 4.
    Ravichandran, Ranjithkumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Extracellular matrix mimetic multi-functional scaffolds for tissue engineering and biomedical applications2018Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Regeneration of functional tissues or complex organs via the combination of viable cells, biomimetic scaffolds, morphogenic factors, and external biophysical cues are the principle aims of Tissue Engineering (TE). TE relies on the use of artificial 3D scaffolds that can mimic the microenvironment of native tissue to harness the regenerative potential of cells. The 3D scaffold provides an appropriate structural and functional support to foster the dynamic interplay of cells and signalling molecules to facilitate the formation of functional tissue. Taking inspiration from the multi-component and multi-functional role of native extracellular matrices (ECM), scaffold engineering provides a platform to understand and integrate the critical features from micro to macro scale necessary for repair and regeneration of tissues. Scaffold engineering also enables the interconnection of TE with its sub-disciplines such as drug delivery, in vitro disease modelling, biosensors or surgical science etc., by designing appropriate multi-functional scaffolds suitable for target specific applications.

    This thesis, addresses existing challenges to manipulate and customise ECM mimicking scaffolds and approaches to overcome these problems, by emphasising the importance of biomaterial design that can emulate the native ECM and potentially be tuned for tissue specific applications. Type I Collagen was functionalised with reactive methacrylate groups without altering its native triple helical structure. Methacrylated collagen (MAC) was further used as a functional building block to fabricate tuneable multifunctional scaffolds using bio-orthogonal thiol-Michael addition click chemistry by optimising several biophysical and biochemical parameters. This method provides the flexibility needed to fabricate injectable and implantable scaffolds based on the same functional components by tuning the modulus from Pa to kPa, thus rendering scaffolds suitable for use for either soft or hard tissues. The versatility of the scaffolds was evaluated by using it as pre-fabricated substrate for human corneal epithelial cells and as an injectable scaffold encapsulated with cardiac progenitor cells.

    The potential of MAC serving as a building block for engineering tailored made ECM mimetic scaffolds was further demonstrated by fabricating smart multi-functional stimuliresponsive scaffolds and conductive scaffolds using a free-radical co-polymerisation technique by choosing appropriate counterparts (polymers). The co-polymerisation of MAC and N-isopropyl acrylamide (NIPAm) formed an in situ, fast gellable, dual responsive (temp and pH) hydrogel comprising covalently linked networks of collagen and thermoresponsive NIPAm polymer. The multi-functionality of these hydrogels was demonstrated as an in-situ depot-forming tunable delivery platform for proteins and small drugs and as a structural support for human skeletal muscle cells. Pyrrole as a monomer was co-polymerised with MAC resulting in MAC-polypyrrole conductive hydrogel scaffold. The utility of ECM mimetic injectable conductive hydrogel scaffold was explored as a long-term continuous glucose-monitoring sensor under physiological conditions.

    Further, to overcome several challenges of Collagen such as inconsistent batch-tobatch reproducibility, risk of disease transmission, stability etc., a collagen-like-peptide (CLP) scaffold was designed as an alternative to collagen. This thesis demonstrates the use of Flexible Template Assisted Self-Assembly (TASS) of CLPs to mimic higher order collagen triple helical assembly by conjugating 38 amino acid length CLP with a multi-arm PEG maleimide template. 8-armPEG conjugated CLP (PEG-CLP) was used to fabricate robust hydrogel scaffolds using carbodiimide chemistry. The biocompatibility and potential of CLP scaffolds as an alternative to collagen was demonstrated by implanting it in mini pigs using corneal transplantation as a test bed. The bottom up-approach to assemble ECM mimetic functional peptides also allows us to design or manipulate CLPs with other bioactive motifs such as RGD or IKVAV to promote specific cell activities suitable for specific tissue regeneration.

    Overall, this thesis provides a modular platform to engineer multi-functional tunable ECM scaffolds based on type I Collagen and collagen-like peptides that combines multiple structural and bio-functional features for wide range of tissue engineering applications.

    Delarbeten
    1. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications
    Öppna denna publikation i ny flik eller fönster >>Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications
    Visa övriga...
    2017 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 34, s. 21068-21078Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Hydrogels comprising natural extracellular matrix (ECM) components are very attractive as scaffolds for regenerative medicine applications due to their inherent biointeractive properties. Responsive materials that adapt to their surrounding environments and regulate transport of ions and bioactive molecules manifest significant advantages for biomedical applications. Although there are many exciting challenges, the opportunity to design, fabricate and engineer stimuli-responsive polymeric systems based on ECM components is particularly attractive for regenerative medicine. Here we describe a one-pot approach to fabricate in situ fast gellable intelligent ECM mimetic scaffolds, based on methacrylated collagen building blocks with mechanical properties that can be modulated in the kPa-MPa range and that are suitable for both soft and hard tissues. Physiochemical characterizations demonstrate their temperature and pH responsiveness, together with the structural and enzymatic resistance that make them suitable scaffolds for long-term use in regenerative medicine and biomedical applications. The multifunctionality of these hydrogels has been demonstrated as an in situ depot-forming delivery platform for the adjustable controlled release of proteins and small drug molecules under physiological conditions and as a structural support for adhesion, proliferation and metabolic activities of human cells. The results presented herein should be useful to the design and fabrication of tailor-made scaffolds with tunable properties that retain and exhibit sustained release of growth factors for promoting tissue regeneration.

    Ort, förlag, år, upplaga, sidor
    Royal Society of Chemistry, 2017
    Nationell ämneskategori
    Annan kemi
    Identifikatorer
    urn:nbn:se:liu:diva-137627 (URN)10.1039/c7ra02927f (DOI)000399722300040 ()2-s2.0-85018519019 (Scopus ID)
    Anmärkning

    Funding Agencies|Swedish Research Council Junior Researcher Project [621-2012-4286]; CeNano PhD student salary grant; FP7-Health-Innovation program, acronym HESUB [2-2013-601700]

    Tillgänglig från: 2017-05-23 Skapad: 2017-05-23 Senast uppdaterad: 2017-11-29Bibliografiskt granskad
    2. Correction: Functionalised type-1 collagen as a hydrogel building block for bio-orthogonal tissue engineering applications (vol 4, pg 318, 2016)
    Öppna denna publikation i ny flik eller fönster >>Correction: Functionalised type-1 collagen as a hydrogel building block for bio-orthogonal tissue engineering applications (vol 4, pg 318, 2016)
    Visa övriga...
    2017 (Engelska)Ingår i: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 5, nr 26, s. 5284-5284Artikel i tidskrift (Övrigt vetenskapligt) Published
    Abstract [en]

    n/a

    Ort, förlag, år, upplaga, sidor
    ROYAL SOC CHEMISTRY, 2017
    Nationell ämneskategori
    Fysik Klinisk medicin Kemi
    Identifikatorer
    urn:nbn:se:liu:diva-139559 (URN)10.1039/c7tb90075a (DOI)000404868400026 ()
    Tillgänglig från: 2017-08-08 Skapad: 2017-08-08 Senast uppdaterad: 2018-04-10
    3. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications
    Öppna denna publikation i ny flik eller fönster >>Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications
    Visa övriga...
    2016 (Engelska)Ingår i: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 4, nr 2, s. 318-326Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    In this study, we derivatized type I collagen without altering its triple helical conformation to allow for facile hydrogel formation via the Michael addition of thiols to methacrylates without the addition of other crosslinking agents. This method provides the flexibility needed for the fabrication of injectable hydrogels or pre-fabricated implantable scaffolds, using the same components by tuning the modulus from Pa to kPa. Enzymatic degradability of the hydrogels can also be easily fine-tuned by variation of the ratio and the type of the crosslinking component. The structural morphology reveals a lamellar structure mimicking native collagen fibrils. The versatility of this material is demonstrated by its use as a pre-fabricated substrate for culturing human corneal epithelial cells and as an injectable hydrogel for 3-D encapsulation of cardiac progenitor cells.

    Ort, förlag, år, upplaga, sidor
    ROYAL SOC CHEMISTRY, 2016
    Nationell ämneskategori
    Fysik Kemi Klinisk medicin
    Identifikatorer
    urn:nbn:se:liu:diva-124491 (URN)10.1039/c5tb02035b (DOI)000367335200016 ()
    Anmärkning

    Funding Agencies|Swedish Research Council [621-2012-4286, 521-2012-5706]; NSERC; UOHI

    Tillgänglig från: 2016-02-02 Skapad: 2016-02-01 Senast uppdaterad: 2017-11-30
    4. Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic
    Öppna denna publikation i ny flik eller fönster >>Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic
    2014 (Engelska)Ingår i: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 2, nr 48, s. 8466-8478Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Peptides that self-assemble into well-defined nanofibrous networks provide a prominent alternative to traditional biomaterials for fabricating scaffolds for use in regenerative medicine and other biomedical applications. Such scaffolds can be generated by decorating a peptide backbone with other bioactives such as cell specific adhesion peptides, growth factors and enzyme cleavable sequences. They can be designed to mimic the three-dimensional (3D) structural features of native ECM and can therefore also provide insight into the ECM-cell interactions needed for development of scaffolds that can serve as regeneration templates for specific target tissues or organs. This review highlights the potential application of self-assembling peptides in regenerative medicine.

    Ort, förlag, år, upplaga, sidor
    Royal Society of Chemistry, 2014
    Nationell ämneskategori
    Fysik Klinisk medicin
    Identifikatorer
    urn:nbn:se:liu:diva-113073 (URN)10.1039/c4tb01095g (DOI)000345529400002 ()
    Anmärkning

    Funding Agencies|Swedish Research Council, Sweden [2012-42315-94008-81]

    Tillgänglig från: 2015-01-09 Skapad: 2015-01-08 Senast uppdaterad: 2017-12-05
    5. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation
    Öppna denna publikation i ny flik eller fönster >>Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation
    Visa övriga...
    2016 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, nr 61, s. 55745-55749Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Extracellular matrix proteins like collagen promote regeneration as implants in clinical studies. However, collagens are large and unwieldy proteins, making small functional peptide analogs potentially ideal substitutes. Self-assembling collagen-like-peptides conjugated with PEG-maleimide were assembled into hydrogels. When tested pre-clinically as corneal implants in mini-pigs, they promoted cell and nerve regeneration, forming neo-corneas structurally and functionally similar to natural corneas.

    Ort, förlag, år, upplaga, sidor
    ROYAL SOC CHEMISTRY, 2016
    Nationell ämneskategori
    Biokemi och molekylärbiologi
    Identifikatorer
    urn:nbn:se:liu:diva-130324 (URN)10.1039/c6ra08895c (DOI)000378275400008 ()
    Anmärkning

    Funding Agencies|Vinnova Indo-Sweden grant [2013-04645]; Integrative Regenerative Medicine Centre, Linkoping University (LiU); Region Ostergotland; Swedish Research Council grant [621-2012-4286]

    Tillgänglig från: 2016-07-29 Skapad: 2016-07-28 Senast uppdaterad: 2017-11-28
  • 5.
    Ravichandran, Ranjithkumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska högskolan.
    Griffith, May
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Hälsouniversitetet.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska högskolan.
    Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic2014Ingår i: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 2, nr 48, s. 8466-8478Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Peptides that self-assemble into well-defined nanofibrous networks provide a prominent alternative to traditional biomaterials for fabricating scaffolds for use in regenerative medicine and other biomedical applications. Such scaffolds can be generated by decorating a peptide backbone with other bioactives such as cell specific adhesion peptides, growth factors and enzyme cleavable sequences. They can be designed to mimic the three-dimensional (3D) structural features of native ECM and can therefore also provide insight into the ECM-cell interactions needed for development of scaffolds that can serve as regeneration templates for specific target tissues or organs. This review highlights the potential application of self-assembling peptides in regenerative medicine.

  • 6.
    Ravichandran, Ranjithkumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Islam, M. M.
    Karolinska Institute, Sweden; .
    Alarcon, E. I.
    University of Ottawa, Canada; .
    Samanta, Ayan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Wang, S.
    Uppsala University, Sweden.
    Lundström, Patrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Hilborn, J.
    Uppsala University, Sweden.
    Griffith, May
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications2016Ingår i: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 4, nr 2, s. 318-326Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, we derivatized type I collagen without altering its triple helical conformation to allow for facile hydrogel formation via the Michael addition of thiols to methacrylates without the addition of other crosslinking agents. This method provides the flexibility needed for the fabrication of injectable hydrogels or pre-fabricated implantable scaffolds, using the same components by tuning the modulus from Pa to kPa. Enzymatic degradability of the hydrogels can also be easily fine-tuned by variation of the ratio and the type of the crosslinking component. The structural morphology reveals a lamellar structure mimicking native collagen fibrils. The versatility of this material is demonstrated by its use as a pre-fabricated substrate for culturing human corneal epithelial cells and as an injectable hydrogel for 3-D encapsulation of cardiac progenitor cells.

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf