liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 84
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Anusuyadevi, Prasaanth Ravi
    et al.
    Royal Inst Technol KTH, Sweden.
    Shanker, Ravi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cui, Yuxiao
    Royal Inst Technol KTH, Sweden.
    Riazanova, Anastasia V
    Royal Inst Technol KTH, Sweden.
    Järn, Mikael
    RISE Res Inst Sweden, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Svagan, Anna J.
    Royal Inst Technol KTH, Sweden.
    Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 36, article id 2101519Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals (CNCs) possess the ability to form helical periodic structures that generate structural colors. Due to the helicity, such self-assembled cellulose structures preferentially reflect left-handed circularly polarized light of certain colors, while they remain transparent to right-handed circularly polarized light. This study shows that combination with a liquid crystal enables modulation of the optical response to obtain light reflection of both handedness but with reversed spectral profiles. As a result, the nanophotonic systems provide vibrant structural colors that are tunable via the incident light polarization. The results are attributed to the liquid crystal aligning on the CNC/glucose film, to form a birefringent layer that twists the incident light polarization before interaction with the chiral cellulose nanocomposite. Using a photoresponsive liquid crystal, this effect can further be turned off by exposure to UV light, which switches the nematic liquid crystal into a nonbirefringent isotropic phase. The study highlights the potential of hybrid cellulose systems to create self-assembled yet advanced photoresponsive and polarization-tunable nanophotonics.

    Download full text (pdf)
    fulltext
  • 2.
    Anusuyadevi, Prasaanth Ravi
    et al.
    Royal Inst Technol KTH, Sweden; M S Ramaiah Inst Technol, India.
    Singha, Shuvra
    Royal Inst Technol KTH, Sweden.
    Banerjee, Debashree
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Wallenberg Wood Sci Ctr, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Wallenberg Wood Sci Ctr, Sweden.
    Hedenqvist, Mikael S. S.
    Royal Inst Technol KTH, Sweden.
    Svagan, Anna J. J.
    Royal Inst Technol KTH, Sweden.
    Synthetic Plant Cuticle Coating as a Biomimetic Moisture Barrier Membrane for Structurally Colored Cellulose Films2023In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 10, no 7, article id 2202112Article in journal (Refereed)
    Abstract [en]

    Photonic films based on cellulose nanocrystals (CNCs) are sustainable candidates for sensors, structurally colored radiative cooling, and iridescent coatings. Such CNC-based films possess a helicoidal nanoarchitecture, which gives selective reflection with the polarization of the incident light. However, due to the hygroscopic nature of CNCs, the structural colored material changes and may be irreversibly damaged at high relative humidity. Thus, moisture protection is essential in such settings. In this work, hygroscopic CNC-based films are protected with a bioinspired synthetic plant cuticle; a strategy already adopted by real plants. The protective cuticle layers altered the reflected colors to some extent, but more importantly, they significantly reduced the water vapor permeance by more than two orders of magnitude, from 2.1 x 10(7) (pristine CNC/GLU film) to 12.3 x 10(4) g mu m m(-2) day(-1) atm(-1) (protected CNC/GLU film). This expands significantly the time window of operation for CNC/GLU films at high relative humidity.

    Download full text (pdf)
    fulltext
  • 3.
    Banerjee, Debashree
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hallberg, Tomas
    FOI Swedish Def Res Agcy, Sweden.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kuang, Chaoyang
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liao, Mingna
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kariis, Hans
    FOI Swedish Def Res Agcy, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electrical tuning of radiative cooling at ambient conditions2023In: Cell Reports Physical Science, E-ISSN 2666-3864, Vol. 4, no 2, article id 101274Article in journal (Refereed)
    Abstract [en]

    Passive radiative cooling forms a sustainable means for cooling of objects through thermal radiation. Along with progress on static cooling systems, there is an emerging need for dynamic control to enable thermoregulation. Here, we demonstrate temperature regu-lation of devices at ambient pressure and temperature by electri-cally tuning their radiative cooling power. Our concept exploits the possibility to electrochemically tune the thermal emissivity and thereby cooling power of a conducting polymer, which enabled reversible control of device temperatures of around 0.25 degrees C at ambient conditions in a sky simulator. Besides tuneable radiative cooling by exposure to the sky, the concept could also contribute to reduced needs for indoor climate control by enabling dynamic control of thermal energy flows between indoor objects, such as be-tween people and walls.

    Download full text (pdf)
    fulltext
  • 4.
    Belkin, Maxim
    et al.
    University of Illinois, IL 61801 USA.
    Chao, Shu-Han
    University of Illinois, IL 61801 USA.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Aksimentiev, Aleksei
    University of Illinois, IL 61801 USA.
    Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA2015In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 9, no 11, p. 10598-10611Article in journal (Refereed)
    Abstract [en]

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization.

    Download full text (pdf)
    fulltext
  • 5.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1805813Article, review/survey (Refereed)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Download full text (pdf)
    fulltext
  • 6.
    Bernacka Wojcik, Iwona
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Talide, Loic
    Swedish Univ Agr Sci, Sweden.
    Abdel Aziz, Ilaria
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simura, Jan
    Swedish Univ Agr Sci, Sweden.
    Oikonomou, Vasileios
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mohammadi, Mohsen
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Manan Dar, Abdul Manan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Seitanidou, Maria S
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ljung, Karin
    Swedish Univ Agr Sci, Sweden.
    Niittyla, Totte
    Swedish Univ Agr Sci, Sweden.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Swedish Univ Agr Sci, Sweden.
    Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants2023In: Advanced Science, E-ISSN 2198-3844, Vol. 10, no 14, article id 2206409Article in journal (Refereed)
    Abstract [en]

    Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.

    Download full text (pdf)
    fulltext
  • 7.
    Blake, Jolie C.
    et al.
    Chalmers Univ Technol, Sweden.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Dahlin, Andreas
    Chalmers Univ Technol, Sweden.
    Scalable Reflective Plasmonic Structural Colors from Nanoparticles and Cavity Resonances - the Cyan-Magenta-Yellow Approach2022In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 10, no 13, article id 2200471Article in journal (Refereed)
    Abstract [en]

    Plasmonic metasurfaces for color generation are emerging as important components for next generation display devices. Fabricating bright plasmonic colors economically and via easily scalable methods, however, remains difficult. Here, the authors demonstrate an efficient and scalable strategy based on colloidal lithography to fabricate silver-based reflective metal-insulator-nanodisk plasmonic cavities that provide a cyan-magenta-yellow (CMY) color palette with high relative luminance. With the same basic structure, they exploit different mechanisms to efficiently produce a complete subtractive color palette. Finite-difference time-domain simulations reveal that these mechanisms include gap surface plasmon modes for thin insulators and hybridized modes between disk plasmons and Fabry-Perot modes for thicker systems. To produce yellow hues, they take advantage of higher-energy gap surface plasmon modes to allow resonance dips in the blue spectral region for comparably large nanodisks, thereby circumventing difficult fabrication of nanodisks less than 80 nm. It is anticipated that incorporation of these strategies can reduce fabrication constraints, produce bright saturated colors, and expedite large-scale production.

    Download full text (pdf)
    fulltext
  • 8.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Acreo, Sweden.
    Edberg, Jesper
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Acreo, Sweden.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Greyscale and Paper Electrochromic Polymer Displays by UV Patterning2019In: Polymers, E-ISSN 2073-4360, Vol. 11, no 2, article id 267Article in journal (Refereed)
    Abstract [en]

    Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

    Download full text (pdf)
    fulltext
  • 9.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Mitraka, Evangelia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sardar, Samim
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Mats
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Infrared electrochromic conducting polymer devices2017In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, no 23, p. 5824-5830Article in journal (Refereed)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.

    Download full text (pdf)
    fulltext
  • 10.
    Che, Canyan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Department of Physics, Chemistry and Biology.
    Ail, Ujwala
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Phopase, Jaywant
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology.
    Brooke, Robert
    RISE, Norrköping, Sweden.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage2019In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, no 9, article id 1900039Article in journal (Refereed)
    Abstract [en]

    Abstract Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer?polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g?1.

  • 11.
    Che, Canyan
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Wijeratne, Kosala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Warczak, Magdalena
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels2018In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Article in journal (Refereed)
    Abstract [en]

    Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

  • 12.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kang, Evan S. H.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shiran Chaharsoughi, Mina
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Chuanfei
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Conductive polymer nanoantennas for dynamic organic plasmonics2020In: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15Article in journal (Refereed)
    Abstract [en]

    Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

    Download full text (pdf)
    fulltext
  • 13.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Knight, Sean
    Univ Nebraska, NE 68588 USA.
    Brooke, Robert
    RISE Acreo, Sweden.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Schubert, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Univ Nebraska, NE 68588 USA; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model2019In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 15, p. 4350-4362Article in journal (Refereed)
    Abstract [en]

    Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene): tosylate (PEDOT: Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.

    Download full text (pdf)
    fulltext
  • 14.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Spampinato, Nicoletta
    Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, Pessac, France.
    Kuang, Chaoyang
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Brooke, Robert
    RISE Research Institutes of Sweden, Bio- and Organic Electronics, Norrköping, Sweden.
    Kang, Evan S. H.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Pavlopoulou, Eleni
    Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, Pessac, France.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films2020In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 8, p. 18726-18734Article in journal (Refereed)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin films via vapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping.

    Download full text (pdf)
    fulltext
    Download full text (pdf)
    Supplementary information
  • 15.
    Chen, Shangzhi
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. RISE Research Institutes of Sweden, Norrköping, Sweden .
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Redox-tunable structural colour images by UV-patterned conducting polymer nanofilms on metal surfacesManuscript (preprint) (Other academic)
    Abstract [en]

    Precise manipulation of light-matter interaction has enabled a wide variety of approaches to create bright and vivid structural colours. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches significantly impede their further development towards flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Herein, we present a simple and efficient method to generate structural colours based on nanoscale conducting polymer films prepared on metallic surfaces via vapour phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable colours from violet to red. Together with greyscale photomasks this enables fabrication of high-resolution colour images using single exposure steps. We further demonstrate spatiotemporal tuning of the structurally coloured surfaces and images via electrochemical modulation of the polymer redox state. The simple structure, facile fabrication, wide colour gamut, and dynamic colour tuning make this concept competitive for future multi-functional and smart displays.

  • 16.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shanker, Ravi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cincotti, Giancarlo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gamage, Sampath
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 33, article id 2102451Article in journal (Refereed)
    Abstract [en]

    Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Perot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

    Download full text (pdf)
    fulltext
  • 17.
    Dahlin, Andreas B.
    et al.
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Chen, Si
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Gunnarsson, Linda
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Kall, Mikael
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing2009In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 81, no 16, p. 6572-6580Article in journal (Refereed)
    Abstract [en]

    In this article, we demonstrate how to perform microscale spectroscopy of plasmonic nanostructures in order to minimize the noise when determining the resonance peak wavelength. This is accomplished using an experimental setup containing standard optical components mounted on an ordinary light microscope. We present a detailed comparison between extinction spectroscopy in transmission mode and scattering spectroscopy under dark field illumination, which shows that extinction measurements provide higher signal-to-noise in almost all situations. Furthermore, it is shown that rational selection of nanostructure, hardware components, and data analysis algorithms enables tracking of the particle plasmon resonance wavelength from a 10 mu m x 50 mu m area with a resolution of 10(-3) nm in transmission mode. We investigate how the temporal resolution, which can be improved down to 17 Ins, affects, the noise characteristics. In addition, we show how data can be acquired from an area as small as 2 mu m x 10 mu m (similar to 240 particles) at the expense of higher noise on longer time scales. In comparison with previous work on macroscopic sensor designs, this represents a sensor miniaturization of 5 orders of magnitude, without any loss in signal-to-noise performance. As a model system, we illustrate biomolecular detection using gold nanodisks prepared by colloidal lithography. The microextinction measurements of nanodisks described here provide detection of protein surface coverages as low as 40 pg/cm(2) (less than0.1% of saturated binding). In fact, the miniaturized system provides a detection limit in terms of surface coverage comparable to state of the art macroscopic sensors, while simultaneously being as close to single protein molecule detection as sensors based on a single nanoparticle.

  • 18.
    Dahlin, Andreas B.
    et al.
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Jonsson, Peter
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Jonsson, Magnus P.
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Schmid, Emanuel
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Zhou, Ye
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Hook, Fredrik
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Synchronized Quartz Crystal Microbalance and Nanoplasmonic Sensing of Biomolecular Recognition Reactions2008In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 2, no 10, p. 2174-2182Article in journal (Refereed)
    Abstract [en]

    We present a method providing synchronized measurements using the two techniques: quartz crystal microbalance with dissipation (QCM-D) monitoring and localized surface plasmon resonance (LSPR). This was achieved by letting a thin gold film perforated with short-ranged ordered plasmon-active nanoholes act as one of the electrodes of a QCM-D crystal. This enabled transmission-mode optical spectroscopy to be used to temporally resolve colorimetric changes of the LSPR active substrate induced upon bionnolecular binding events. The LSPR response could thus be compared with simultaneously obtained changes in resonance frequency, Delta f, and energy dissipation, AD, of the QCM-D device. Since the LSPR technique is preferentially sensitive to changes within the voids of the nanoholes, while the QCM-D technique is preferentially sensitive to reactions on the planar region between the holes, a surface chemistry providing the same binding kinetics on both gold and silica was used. This was achieved by coating the substrate with poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), which was shown to bind in the same manner on silica and gold modified with a carboxyl-terminated thiol. In this way, the combined setup provided new information about structural changes upon PLL-g-PEG adsorption. We also demonstrate subsequent binding of NeutrAvidin and an immunoreaction utilizing biotin-modified IgG. The combined information from the synchronized measurements was also used in a new way to estimate the sensing volume of the LSPR sensor.

  • 19.
    Dastidar, Subham
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Alam, Md Mehebub
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Janus cellulose for self-adaptive solar heating and evaporative drying2022In: Cell Reports Physical Science, E-ISSN 2666-3864, Vol. 3, no 12, article id 101196Article in journal (Refereed)
    Abstract [en]

    Porous cellulose can be tuned dynamically between reflecting and transparent states through reversible wetting with liquids like water while remaining non-absorptive in both states. By combining porous cellulose with an underlying cellulose-carbon nanotube layer, we here report a Janus cellulose that instead switches between reflect-ing and absorptive states. While the material is reflective and low absorbing in its dry state, exposure to water increases the optical transparency of the top layer and enables the bottom layer to absorb solar light and generate heat. In turn, this initiates a self -adaptive process that drives water evaporation and dries the struc-ture, making it reflective again. In situ measurements of scattering intensity, temperature, and water evaporation reveal an intriguing dynamic relationship between the optical and thermal properties of the Janus cellulose. This study highlights the use of cellulose sys-tems for solar and thermal management, demonstrating solar -induced self-adaptive heating, evaporative drying, and thermal regulation.

    Download full text (pdf)
    fulltext
  • 20.
    Duan, Yulong
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rahmanudin, Aiman
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kim, Nara
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mohammadi, Mohsen
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas2023In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light. Traditional anisotropic nanoantennas have asymmetric shape. In this work, symmetry is instead broken by straining of a conducting polymer, leading to an in-plane anisotropic plasma frequency. This enables circularly symmetric nanoantennas with polarization-dependent localized surface plasmon resonances. The polarization dependence is consistent with inverse changes of the effective mass and mobility of thecharge carriers along different in-plane directions.image

  • 21.
    Elhag, Sami
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Tordera, Daniel
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Deydier, T
    Department of Material Engineering, University of Toulon, FR-83041 Toulon, France .
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    LiU, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Low-temperature growth of polyethylene glycol-doped BiZn2VO6 nanocompounds with enhanced photoelectrochemical properties2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 3, p. 1112-1119Article in journal (Refereed)
    Abstract [en]

    We demonstrate scalable, low-cost and low-temperature (<100 °C) aqueous chemical growth of bismuth–zinc vanadate (BiZn2VO6) nanocompounds by BiVO4 growth on ZnO nanobelts (NBs). The nanocompounds were further doped with polyethylene glycol (PEG) to tune the electronic structure of the materials, as a means to lower the charge carrier recombination rate. The chemical composition, morphology, and detailed nanostructure of the BiZn2VO6 nanocompounds were characterized. They exhibit rice-like morphology, are highly dense on the substrate and possess a good crystalline quality. Photoelectrochemical characterization in 0.1 M lithium perchlorate in carbonate propylene shows that BiZn2VO6 nanocompounds are highly suitable as anodes for solar-driven photoelectrochemical applications, providing significantly better performance than with only ZnO NBs. This performance could be attributed to the heterogeneous catalysis effect at nanocompound and ZnO NB interfaces, which have enhanced the electron transfer process on the electrode surface. Furthermore, the charge collection efficiency could be significantly improved through PEG doping of nanocompounds. The photocurrent density of PEG-doped BiZn2VO6 nanocompounds reached values of 2 mA cm−2 at 1.23 V (vs. Ag/AgCl), over 60% larger than that of undoped BiZn2VO6 nanocompounds. Photoluminescence emission experiments confirmed that PEG plays a crucial role in lowering the charge carrier recombination rate. The presented BiZn2VO6 nanocompounds are shown to provide highly competitive performance compared with other state-of-the art photoelectrodes.

    Download full text (pdf)
    fulltext
  • 22.
    Feuz, Laurent
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Material-Selective Surface Chemistry for Nanoplasmonic Sensors: Optimizing Sensitivity and Controlling Binding to Local Hot Spots2012In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 12, no 2, p. 873-879Article in journal (Refereed)
    Abstract [en]

    Optical sensors utilizing the principle of localized surface plasmon resonance (LSPR) offer the advantage of a simple label-free mode of operation, but the sensitivity is typically limited to a very thin region close to the surface. In bioanalytical sensing applications, this can be a significant drawback, in particular since the surface needs to be coated with a recognition layer in order to ensure specific detection of target molecules. We show that the signal upon protein binding decreases dramatically with increasing thickness of the recognition layer, highlighting the need for thin high quality recognition layers compatible with LSPR sensors. The effect is particularly strong for structures that provide local hot spots with highly confined fields, such as in the gap between pairs of gold disks. While our results show a significant improvement in sensor response for pairs over single gold disks upon binding directly to the gold surface, disk pairs did not provide larger signal upon binding of proteins to a recognition layer (already for around 3 nm thin layers) located on the gold. Local plasmonic hot spots are however shown advantageous in combination with directed binding to the hot spots. This was demonstrated using a structure consisting of three surface materials (gold, titanium dioxide, and silicon dioxide) and a new protocol for material-selective surface chemistry of these three materials, which allows for controlled binding only in the gap between pairs of disks. Such a design increased the signal obtained per bound molecule by a factor of around four compared to binding to single disks.

  • 23.
    Feuz, Laurent
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Peter
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas2010In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 4, no 4, p. 2167-2177Article in journal (Refereed)
    Abstract [en]

    The revelation of protein protein-interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we use short-range ordered holes with a diameter of similar to 150 nm and a depth of similar to 50 nm as a nanoplasmonic template. A similar to 40 nm high cylindrical region of Au is exposed on the walls of the holes only, while the rest of the surface consists of TiO(2). Since the sensitivity is confined to the nanometric holes, the use of two different materials for the sensor substrate offers the opportunity to selectively bind proteins to the most sensitive Au regions on the sensor surface. This was realized by applying material-selective poly(ethylene glycol)-based surface chemistry, restricting NeutrAvidin binding to surface-immobilized biotin on the Au areas only. We show that under mass-transport limited conditions (low nM bulk concentrations), the initial time-resolved response of uptake could be increased by a factor of almost 20 compared with the case where proteins were allowed to bind on the entire sensor surface and stress the generic relevance of this concept for nanoscale sensors. In the scope of further optimizing the limit of detection (LOD) of the sensor structure, we present finite-element (FE) simulations to unravel spatially resolved binding rates. These revealed that the binding rates in the holes occur in a highly inhomogeneous manner with highest binding rates observed at the upper rim of the holes and the lowest rates observed at the bottom of the holes. By assuming a plasmonic field distribution with enhanced sensitivity at the Au-TiO(2)interface, the FE simulations reproduced the experimental findings qualitatively.

  • 24.
    Gamage, Sampath
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Banerjee, Debashree
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Alam, Md Mehebub
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hallberg, Tomas
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58111 Linkoping, Sweden.
    Åkerlind, Christina
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58111 Linkoping, Sweden.
    Sultana, Ayesha
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shanker, Ravi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kariis, Hans
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58111 Linkoping, Sweden.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Reflective and transparent cellulose-based passive radiative coolers2021In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 28, p. 9383-9393Article in journal (Refereed)
    Abstract [en]

    Radiative cooling passively removes heat from objects via emission of thermal radiation to cold space. Suitable radiative cooling materials absorb infrared light while they avoid solar heating by either reflecting or transmitting solar radiation, depending on the application. Here, we demonstrate a reflective radiative cooler and a transparent radiative cooler solely based on cellulose derivatives manufactured via electrospinning and casting, respectively. By modifying the microstructure of cellulose materials, we control the solar light interaction from highly reflective (&gt; 90%, porous structure) to highly transparent (approximate to 90%, homogenous structure). Both cellulose materials show high thermal emissivity and minimal solar absorption, making them suitable for daytime radiative cooling. Used as coatings on silicon samples exposed to sun light at daytime, the reflective and transparent cellulose coolers could passively reduce sample temperatures by up to 15 degrees C and 5 degrees C, respectively.

    Download full text (pdf)
    fulltext
  • 25.
    Gamage, Sampath
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kang, Evan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Chungbuk Natl Univ, South Korea.
    Åkerlind, Christina
    FOI Swedish Def Res Agcy, S-58330 Linkoping, Sweden.
    Sardar, Samim
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Ist Italiano Tecnol, Italy.
    Edberg, Jesper
    RISE Acreo, Sweden.
    Kariis, Hans
    FOI Swedish Def Res Agcy, S-58330 Linkoping, Sweden.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling2020In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 8, no 34, p. 11687-11694Article in journal (Refereed)
    Abstract [en]

    Materials that provide independent control of infrared thermal radiation and haze in the visible could benefit many areas and applications, including clothing, packaging and photovoltaics. Here, we study this possibility for a metamaterial composite paper based on cellulose nanofibrils (CNF) and silicon dioxide (SiO2) microparticles with infrared (IR) Frohlich phonon resonances. This CNF-SiO2 composite shows outstanding transparency in the visible wavelength range, with the option of controlling light diffusion and haze from almost zero to 90% by varying the SiO2 microparticle concentration. We further show that the transparent metamaterial paper could maintain high thermal emissivity in the atmospheric IR window, as attributed to strong IR absorption of both the nanocellulose and the resonant SiO2 microparticles. The high IR emissivity and low visible absorption make the paper suitable for passive radiative cooling and we demonstrate cooling of the paper to around 3 degrees C below ambient air temperature by exposing it to the sky.

    Download full text (pdf)
    fulltext
  • 26.
    Gugole, Marika
    et al.
    Chalmers Univ Technol, Sweden.
    Olsson, Oliver
    Chalmers Univ Technol, Sweden.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Dahlin, Andreas
    Chalmers Univ Technol, Sweden.
    Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness2021In: Nano Letters, ISSN 1530-6984, E-ISSN 1530-6992, Vol. 21, no 10, p. 4343-4350Article in journal (Refereed)
    Abstract [en]

    The possibility of actively controlling structural colors has recently attracted a lot of attention, in particular for new types of reflective displays (electronic paper). However, it has proven challenging to achieve good image quality in such devices, mainly because many subpixels are necessary and the semi-transparent counter electrodes lower the total reflectance. Here we present an inorganic electrochromic nanostructure based on tungsten trioxide, gold, and a thin platinum mirror. The platinum reflector provides a wide color range and makes it possible to "reverse" the device design so that electrolyte and counter electrode can be placed behind the nanostructures with respect to the viewer. Importantly, this makes it possible to maintain high reflectance regardless of how the electrochemical cell is constructed. We show that our nanostructures clearly outperform the latest commercial color e-reader in terms of both color range and brightness.

  • 27.
    Hagman, Henning
    et al.
    Chalmers, Sweden.
    Backe, Olof
    Chalmers, Sweden.
    Kiskis, Juris
    Chalmers, Sweden.
    Svedberg, Fredrik
    Chalmers, Sweden.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Hook, Fredrik
    Chalmers, Sweden.
    Enejder, Annika
    Chalmers, Sweden.
    Plasmon-enhanced four-wave mixing by nanoholes in thin gold films2014In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 39, no 4, p. 1001-1004Article in journal (Refereed)
    Abstract [en]

    Nonlinear plasmonics opens up for wavelength conversion, reduced interaction/emission volumes, and nonlinear enhancement effects at the nanoscale with many compelling nanophotonic applications foreseen. We investigate nonlinear plasmonic responses of nanoholes in thin gold films by exciting the holes individually with tightly focused laser beams, employing a degenerated pump/probe and Stokes excitation scheme. Excitation of the holes results in efficient generation of both narrowband four-wave mixing (FWM) and broadband multiphoton excited luminescence, blueshifted relative to the excitation beams. Clear enhancements were observed when matching the pump/probe wavelength with the hole plasmon resonance. These observations show that the FWM generation is locally excited by nanoholes and has a resonant behavior primarily governed by the dimensions of the individual holes. (C) 2014 Optical Society of America

  • 28.
    Hook, Fredrik
    et al.
    Lund University, Sweden; Chalmers, Sweden.
    Stengel, Gudrun
    Division of Solid State Physics, Lund University, Lund, SE-22100, Sweden .
    Dahlin, Andreas B.
    Lund University, Sweden; Chalmers, Sweden.
    Gunnarsson, Anders
    Division of Solid State Physics, Lund University, Lund, SE-22100, Sweden .
    Jonsson, Magnus P.
    Division of Solid State Physics, Lund University, Lund, SE-22100, Sweden .
    Jonsson, Peter
    Division of Solid State Physics, Lund University, Lund, SE-22100, Sweden .
    Reimhult, Erik
    Department of Applied Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden .
    Simonsson, Lisa
    Division of Solid State Physics, Lund University, Lund, SE-22100, Sweden .
    Svedhem, Sofia
    Department of Applied Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden .
    Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques2008In: Biointerphases, ISSN 1934-8630, E-ISSN 1559-4106, Vol. 3, no 2, p. FA108-FA116Article in journal (Refereed)
    Abstract [en]

    This article summarizes our most recent contributions to the rapidly growing field of supported lipid assemblies with emphasis on current studies addressing both fundamental and applied aspects of supported lipid bilayer (SLB) and tethered lipid vesicles (TLVs) to be utilized in sensing applications. The new insights obtained from combining the quartz crystal microbalance with dissipation monitoring technique with surface plasmon resonance are described, and we also present recent studies in which nanoplasmonic sensing has been used in studies of SLBs and TLVs. To gain full control over the spatial arrangement of TLVs in both two and three dimensions, we have developed a method for site-selective and sequence-specific sorting of DNA-tagged vesicles to surfaces modified with complementary DNA. The combination of this method with nanoplasmonic sensing formats is covered as well as the possibility of using DNA-modified vesicles for the detection of unlabeled DNA targets on the single-molecule level. Finally, a new method for membrane fusion induced by hybridization of vesicle-anchored DNA is demonstrated, including new results on content mixing obtained with vesicle populations encapsulating short, complementary DNA strands.

  • 29.
    Janssen, Xander J. A.
    et al.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Plesa, Calin
    Delft University of Technology, Netherlands.
    Soni, Gautam V.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Dekker, Nynke H.
    Delft University of Technology, Netherlands.
    Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography2012In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 47, article id 475302Article in journal (Refereed)
    Abstract [en]

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafers top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 mu m x 12 mu m) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate.

  • 30.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Varde nanoljus!2019In: Ett kalejdoskop av kunskap: Sveriges unga akademi om vetenskap och samhälle / [ed] David Håkansson, Stockholm: Santérus Förlag, 2019, p. 69-77Chapter in book (Other (popular science, discussion, etc.))
  • 31.
    Jonsson, Magnus P.
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Dahlin, Andreas B.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Feuz, Laurent
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Petronis, Sarunas
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing2010In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 82, no 5, p. 2087-2094Article in journal (Refereed)
    Abstract [en]

    Nanoplasmonic sensors based on short-range ordered nano-holes in thin metal films and discrete metal nanoparticles are known to provide similar sensing performance. However, a perforated metal film is unique in the sense that the holes can be designed to penetrate through the substrate, thereby also fulfilling the role of nanofluidic channels. This paper presents a bioanalytical sensing concept based on short-range ordered nanoplasmonic pores (diameter 150 nm) penetrating through a thin (around 250 nm) multilayer membrane composed of gold and silicon nitride (SiN) that is Supported on a Si wafer. Also, a fabrication scheme that enables parallel production of multiple (more than 50) separate sensor chips or more than 1000 separate nanoplasmonic membranes on it single wafer is presented. Together with the localization of the sensitivity to within such short-range ordered nanoholes, the structure provides it two-dimensional nanofluidic network, sized in the order of 100 x 100 mu m(2), with nanoplasmon active regions localized to each individual nanochannel. A material-specific surface-modification scheme was developed to promote specific binding of target molecules on the optically active gold regions only, while suppressing nonspecific adsorption on SiN. Using this protocol, and by monitoring the temporal variation in the plasmon resonance of the structure, we demonstrate flow-through nanoplasmonic sensing of specific biorecognition reactions with a signal-to-noise ratio of around 50 at a temporal resolution below 190 ms. With flow, the uptake was demonstrated to be at least 1 order of magnitude faster than under stagnant conditions, while still keeping the sample consumption at a minimum.

  • 32.
    Jonsson, Magnus P.
    et al.
    Chalmers, Sweden.
    Dahlin, Andreas B.
    Chalmers, Sweden.
    Jonsson, Peter
    Lund University, Sweden.
    Hook, Fredrik
    Chalmers, Sweden.
    Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films2008In: BIOINTERPHASES, ISSN 1934-8630, Vol. 3, no 3, p. FD30-FD40Article, review/survey (Refereed)
    Abstract [en]

    The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass. c 2008 American Vacuum Society. [DOI: 10.1116/1.3027483]

  • 33.
    Jonsson, Magnus P.
    et al.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Plasmonic Nanopore for Electrical Profiling of Optical Intensity Landscapes2013In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 13, no 3, p. 1029-1033Article in journal (Refereed)
    Abstract [en]

    We present a novel method for sensitive mapping of optical intensity distributions at subdiffraction-limited resolution. This is achieved with a novel device, a plasmonic nanopore, which combines a plasmonic bowtie nanoantenna with a 10 nm-in-diameter solid-state nanopore. Variations in the local optical intensity modulate the plasmonic heating, which we measure electrically through changes in the ionic conductance of the nanopore. We demonstrate the method by profiling the focal volume of a 10 mW laser beam that is tightly focused by a high-numerical-aperture microscope objective. The results show a complex three-dimensional intensity distribution that closely matches predictions obtained by theoretical calculations of the optical system. In addition to laser profiling, the ionic conductance of a nanopore is also shown to provide quantitative estimates of the temperature in the proximity of single plasmonic nanostructures.

  • 34.
    Jonsson, Magnus P.
    et al.
    DiVision of Solid State Physics, Lund UniVersity, SE-22100 Lund, Sweden.
    Jonsson, Peter
    DiVision of Solid State Physics, Lund UniVersity, SE-22100 Lund, Sweden.
    Dahlin, Andreas B.
    DiVision of Solid State Physics, Lund UniVersity, SE-22100 Lund, Sweden.
    Hook, Fredrik
    DiVision of Solid State Physics, Lund UniVersity, SE-22100 Lund, Sweden.
    Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template2007In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 7, no 11, p. 3462-3468Article in journal (Refereed)
    Abstract [en]

    This paper presents the use of the localized surface plasmon resonance (LSPR) sensor concept to probe the formation of macroscopic and laterally mobile supported lipid bilayers (SLBs) on SiO(x)-encapsulated nanohole-containing Au and Ag films. A comparison between Au- and Ag-based sensor templates demonstrates a higher sensitivity for Au-based templates with respect to both bulk and interfacial refractive index (RI) changes in aqueous solution. The lateral mobility of SLBs formed on the SiO(x)-rencapsulated nanohole templates was analyzed using fluorescence recovery after photobleaching (FRAP), demonstrating essentially complete (greater than96%) recovery, but a reduction in diffusivity of about 35% compared with SLBs formed on flat SiO(x) substrates. Furthermore, upon SLB formation, the temporal variation in extinction peak position of the LSPR active templates display a characteristic shape, illustrating what, to the best of our knowledge, is the first example where the nanoplasmonic concept is shown capable of probing biomacromolecular structural changes without the introduction of labels. With a signal-to-noise ratio better than 5 X 10(2) upon protein binding to the cell-membrane mimics, the sensor concept is also proven competitive with state-of-the-art label-free sensors.

  • 35.
    Jonsson, Magnus P.
    et al.
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Jonsson, Peter
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Hook, Fredrik
    Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
    Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass2008In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 80, no 21, p. 7988-7995Article in journal (Refereed)
    Abstract [en]

    This paper presents a study of supported lipid bilayer (SIB) formation and subsequent protein binding using a sensor that combines localized surface plasmon resonance (LSPR) and quartz crystal microbalance with dissipation (QCM-D) monitoring. The LSPR activity arises from silicon oxide (SiOx) coated nanometric apertures in a thin gold film, which also serves as the active electrode of a QCM-D crystal. Both transducer principles provide signatures for the formation of a SLB upon adsorption and subsequent rupture of adsorbed lipid vesicles. However, the two techniques are sensitive over different regions of the sample: LSPR primarily inside and on the rim of the holes and QCM-D primarily on the planar areas between the holes. Although the dimension of the lipid vesicles is on the same order as the dimension of the nanoholes, it is concluded from the response of the combined system that vesicle rupture in the nanoholes and on the planar region between the holes is synchronized. Furthermore, by determining the thickness of the SLB from the QCM-D response, the characteristic decay length of the LSPR field intensity could be determined. This made it possible not only to determine the mass and refractive index of the homogeneous SLB but also to postulate a generic means to quantify the LSPR response in terms of mass-uptake also for nonhomogeneous films. This is exemplified by measuring the adsorbed lipid mass during vesicle adsorption, yielding the critical lipid vesicle coverage at which spontaneous rupture into a planar bilayer occurs. The generic applicability and versatility of the method is demonstrated from specific protein binding to a functionalized SLB. From the absolute refractive index of the protein, provided from the LSPR data alone, it was possible to determine both the effective thickness of the protein film and the molecular mass (or number) of bound protein.

  • 36.
    Jonsson, Peter
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer2010In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 10, no 5, p. 1900-1906Article in journal (Refereed)
    Abstract [en]

    A supported lipid bilayer (SLB) was formed in a microfluidic channel by vesicle fusion. The SLB, formed on a flat part of the surface, was driven by the shear forces of a bulk flow above the SLB to a part of the surface with embedded submicrometer wells. When using a bulk solution with a pH of 9.5 the advancing lipid bilayer sealed the wells, creating free-spanning membranes, whereas at a pH of 8.0 the SLB instead followed the contour of the wells.

  • 37.
    Jonsson, Peter
    et al.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Jonsson, Magnus P.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Tegenfeldt, Jonas O.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Hook, Fredrik
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    A Method Improving the Accuracy of Fluorescence Recovery after Photobleaching Analysis2008In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 95, no 11, p. 5334-5348Article in journal (Refereed)
    Abstract [en]

    Fluorescence recovery after photobleaching has been an established technique of quantifying the mobility of molecular species in cells and cell membranes for more than 30 years. However, under nonideal experimental conditions, the current methods of analysis still suffer from occasional problems; for example, when the signal/noise ratio is low, when there are temporal fluctuations in the illumination, or when there is bleaching during the recovery process. We here present a method of analysis that overcomes these problems, yielding accurate results even under nonideal experimental conditions. The method is based on circular averaging of each image, followed by spatial frequency analysis of the averaged radial data, and requires no prior knowledge of the shape of the bleached area. The method was validated using both simulated and experimental fluorescence recovery after photobleaching data, illustrating that the diffusion coefficient of a single diffusing component can be determined to within similar to 1%, even for small signal levels (100 photon counts), and that at typical signal levels (5000 photon counts) a system with two diffusion coefficients can be analyzed with less than 10% error.

  • 38.
    Jönsson, Gustav
    et al.
    Chalmers University of of Technology, Gothenburg, Sweden.
    Tordera, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Pakizeh, Tavakol
    K. N. Toosi University of of Technology, Tehran, Iran.
    Jaysankar, Manoj
    Chalmers University of of Technology, Gothenburg, Sweden.
    Miljkovic, Vladimir
    NILT Sweden Filial, Stena Center 1B, Gothenburg, Sweden.
    Tong, Lianming
    Institute of Physics, Chinese Academy of Sciences, Beijing, China.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Dmitriev, Alexandre
    Chalmers University of of Technology, Gothenburg, Sweden; Department of Physics, University of of Gothenburg, Gothenburg, Sweden; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States.
    Solar Transparent Radiators by Optical Nanoantennas2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 11, p. 6766-6772Article in journal (Refereed)
    Abstract [en]

    Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces. © 2017 American Chemical Society.

    Download full text (pdf)
    fulltext
  • 39.
    Kang, Evan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Chungbuk Natl Univ, South Korea.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Derek, Vedran
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Hagglund, Carl
    Uppsala Univ, Sweden.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Charge transport in phthalocyanine thin-film transistors coupled with Fabry-Perot cavities2021In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 9, no 7, p. 2368-2374Article in journal (Refereed)
    Abstract [en]

    Strong light-matter coupling can form hybrid states at new energy levels that share properties of both light and matter. This principle offers new routes to control material functions without modifying the chemical structure of molecules. In this work, we coupled ambipolar semiconducting thin films to a Fabry-Perot cavity and investigated effects on charge transport. By constructing thin-film transistors inside optical cavities, we could simultaneously study coupling features and charge transport in the same samples. The cavity resonance was detuned by controlling the thickness of the top spacer layer in the cavity. We found no significant influence on charge transport for our systems, which may be related to insufficiently strong coupling. Possible additional origins and future directions are also discussed.

    Download full text (pdf)
    fulltext
  • 40.
    Kang, Evan
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ekinge, Hugo
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Platen High Sch, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness2019In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 9, no 3, p. 1404-1415Article in journal (Refereed)
    Abstract [en]

    We study the evolution from suppressed to enhanced optical transmission through metal nanohole arrays with increasing film thickness. Due to Fano interferences, the plasmon resonances gradually shift from transmission dips for ultrathin films to peaks for thick films, accompanied by a Fano asymmetry parameter that increases with film thickness. For intermediate thicknesses, both peaks and dips in transmission are far from the plasmon resonances, and hence, also far from the spectral positions of maximum light absorption and nearfield enhancements. Calculations for various hole diameters and periodicities confirm the universality of our conclusions. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    Download full text (pdf)
    fulltext
  • 41.
    Kang, Evan S. H.
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sardar, Samim
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tordera, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Armakavicius, Nerijus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shegai, Timur
    Department of Physics, Chalmers University of Technology, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces2018In: ACS Photonics, E-ISSN 2330-4022, p. 4046-4055Article in journal (Refereed)
    Abstract [en]

    Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

    Download full text (pdf)
    fulltext
  • 42.
    Kang, Evan S. H.
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shiran Chaharsoughi, Mina
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rossi, Stefano
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hybrid plasmonic metasurfaces2019In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 126, no 14, article id 140901Article in journal (Refereed)
    Abstract [en]

    Plasmonic metasurfaces based on ensembles of distributed metallic nanostructures can absorb, scatter, and in other ways shape light at the nanoscale. Forming hybrid plasmonic metasurfaces by combination with other materials opens up for new research directions and novel applications. This perspective highlights some of the recent advancements in this vibrant research field. Particular emphasis is put on hybrid plasmonic metasurfaces comprising organic materials and on concepts related to switchable surfaces, light-to-heat conversion, and hybridized light-matter states based on strong coupling.

    Download full text (pdf)
    fulltext
  • 43.
    Kang, Evan S. H.
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Chungbuk Natl Univ, South Korea.
    Sriram, K. K.
    Chalmers Univ Technol, Sweden.
    Jeon, Inho
    Chungbuk Natl Univ, South Korea.
    Kim, Jehan
    Pohang Univ Sci & Technol, South Korea.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kim, Kyoung-Ho
    Chungbuk Natl Univ, South Korea.
    Kim, Ka-Hyun
    Chungbuk Natl Univ, South Korea.
    Lee, Hyun Seok
    Chungbuk Natl Univ, South Korea.
    Westerlund, Fredrik
    Chalmers Univ Technol, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Organic Anisotropic Excitonic Optical Nanoantennas2022In: Advanced Science, E-ISSN 2198-3844, Vol. 9, no 23, article id 2201907Article in journal (Refereed)
    Abstract [en]

    Optical nanoantennas provide control of light at the nanoscale, which makes them important for diverse areas ranging from photocatalysis and flat metaoptics to sensors and biomolecular tweezing. They have traditionally been limited to metallic and dielectric nanostructures that sustain plasmonic and Mie resonances, respectively. More recently, nanostructures of organic J-aggregate excitonic materials have been proposed capable of also supporting nanooptical resonances, although their advance has been hampered from difficulty in nanostructuring. Here, the authors present the realization of organic J-aggregate excitonic nanostructures, using nanocylinder arrays as model system. Extinction spectra show that they can sustain both plasmon-like resonances and dielectric resonances, owing to the material providing negative and large positive permittivity regions at the different sides of its exciton resonance. Furthermore, it is found that the material is highly anisotropic, leading to hyperbolic and elliptic permittivity regions. Nearfield analysis using optical simulation reveals that the nanostructures therefore support hyperbolic localized surface exciton resonances and elliptic Mie resonances, neither of which has been previously demonstrated for this type of material. The anisotropic nanostructures form a new type of optical nanoantennas, which combined with the presented fabrication process opens up for applications such as fully organic excitonic metasurfaces.

    Download full text (pdf)
    fulltext
  • 44.
    Karki, Akchheta
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cincotti, Giancarlo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Lund Univ, Sweden.
    Wang, Chuanfei
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 13, article id 2107172Article in journal (Refereed)
    Abstract [en]

    Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system. In addition to repeated on/off switching of the polymeric nanoantennas, the concept enables gradual electrical tuning of the nano-optical response, which was found to be related to the modulation of both density and mobility of the mobile polaronic charge carriers in the polymer. The resonance position of the PEDOT:Sulf nanoantennas can be conveniently controlled by disk size, here reported down to a wavelength of around 1270 nm. The presented concept may be used for electrically tunable metasurfaces, with tunable farfield as well as nearfield. The work thereby opens for applications ranging from tunable flat meta-optics to adaptable smart windows.

    Download full text (pdf)
    fulltext
  • 45.
    Karki, Akchheta
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yamashita, Yu
    Univ Tokyo, Japan; Natl Inst Mat Sci NIMS, Japan.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kurosawa, Tadanori
    Univ Tokyo, Japan.
    Takeya, Jun
    Univ Tokyo, Japan; Natl Inst Mat Sci NIMS, Japan.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Lund Univ, Sweden.
    Watanabe, Shun
    Univ Tokyo, Japan.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Doped semiconducting polymer nanoantennas for tunable organic plasmonics2022In: Communications Materials, ISSN 2662-4443, Vol. 3, no 1, article id 48Article in journal (Refereed)
    Abstract [en]

    Optical nanoantennas based on organic plasmonics are promising for their higher degree of tunability over metallic nanostructures. Here, nanodisks of polythiophene-based semiconducting polymers provide nanooptical antennas with resonances that are tunable over a 1000 nm wavelength range and can be switched off or on by doping modulation. Optical nanoantennas are often based on plasmonic resonances in metal nanostructures, but their dynamic tunability is limited due to the fixed permittivity of conventional metals. Recently, we introduced PEDOT-based conducting polymers as an alternative materials platform for dynamic plasmonics and metasurfaces. Here, we expand dynamic organic plasmonic systems to a wider class of doped polythiophene-based semiconducting polymers. We present nanodisks of PBTTT semiconducting polymer doped with a dicationic salt, enabling a high doping level of around 0.8 charges per monomer, and demonstrate that they can be used as nanooptical antennas via redox-tunable plasmonic resonances. The resonances arise from the polymer being optically metallic in its doped state and dielectric in its non-conducting undoped state. The plasmonic resonances are controllable over a 1000 nm wavelength range by changing the dimensions of the nanodisks. Furthermore, the optical response of the nanoantennas can be reversibly tuned by modulating the doping level of the polymer. Simulations corroborate the experimental results and reveal the possibility to also modulate the optical nearfield response of the nanoantennas.

    Download full text (pdf)
    fulltext
  • 46.
    Kim, Nara
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electric transport properties in PEDOT thin films2019In: Conjugated polymers: properties, processing, and applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, 4, p. 45-128Chapter in book (Refereed)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 47.
    Kuang, Chaoyang
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Luo, Min
    Univ Elect Sci & Technol China, Peoples R China.
    Zhang, Qilun
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Xiao
    Univ Elect Sci & Technol China, Peoples R China.
    Han, Shaobo
    Wuyi Univ, Peoples R China.
    Wang, Qingqing
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Lund Univ, Sweden.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Lund Univ, Sweden.
    Crispin, Reverant
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wen, Qiye
    Univ Elect Sci & Technol China, Peoples R China; Univ Elect Sci & Technol China, Peoples R China.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Stellenbosch Univ, South Africa.
    Switchable Broadband Terahertz Absorbers Based on Conducting Polymer-Cellulose Aerogels2024In: Advanced Science, E-ISSN 2198-3844, Vol. 11, no 3, article id 2305898Article in journal (Refereed)
    Abstract [en]

    Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths. Realizing materials with large and broadband modulation in absorption or transmission forms a critical challenge. This study demonstrates that conducting polymer-cellulose aerogels can provide modulation of broadband THz light with large modulation range from approximate to 13% to 91% absolute transmission, while maintaining specular reflection loss &lt; -30 dB. The exceptional THz modulation is associated with the anomalous optical conductivity peak of conducting polymers, which enhances the absorption in its oxidized state. The study also demonstrates the possibility to reduce the surface hydrophilicity by simple chemical modifications, and shows that broadband absorption of the aerogels at optical frequencies enables de-frosting by solar-induced heating. These low-cost, aqueous solution-processable, sustainable, and bio-friendly aerogels may find use in next-generation intelligent THz devices.

    Download full text (pdf)
    fulltext
  • 48.
    Lee, Seunghyun
    et al.
    Chungbuk Natl Univ, South Korea.
    Jeong, Daseul
    Chungbuk Natl Univ, South Korea.
    KK, Sriram
    Chalmers Univ Technol, Sweden.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Westerlund, Fredrik
    Chalmers Univ Technol, Sweden.
    Kang, Byeongwon
    Chungbuk Natl Univ, South Korea.
    Kim, Kyoung-Ho
    Chungbuk Natl Univ, South Korea.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kang, Evan S. H.
    Chungbuk Natl Univ, South Korea.
    Plasmonic polymer nanoantenna arrays for electrically tunable and electrode-free metasurfaces2023In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496Article in journal (Refereed)
    Abstract [en]

    Electrically tunable metasurfaces and interrelated nanofabrication techniques are essential for metasurface-based optoelectronic applications. We present a nanofabrication method suitable for various types of plasmonic polymer metasurfaces including inverted arrays of nanoantennas. Inverted metasurfaces are of particular interest since the metasurface itself can work as an electrode due to its interconnected nature, which enables electrical control without adopting an additional electrode. In comparison with inverted nanodisk arrays that support relatively weak resonance features, we show that inverted nanorod arrays can possess stronger resonances, even comparable with those of nanorod arrays. The origin of plasmon resonances in inverted arrays is systematically investigated using finite-difference time-domain (FDTD) simulations. Further, we demonstrate electrically tunable electrode-free metasurface devices using polymer inverted nanorod arrays, which can operate in the full spectral range of the material including the mid-infrared region. Electrically tunable and electrode-free metasurfaces using plasmonic polymer inverted nanoantenna arrays can operate across the entire spectral range of the material, including the mid-infrared region.

  • 49.
    Li, Yi
    et al.
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Nicoli, Francesca
    Delft University of Technology, Netherlands.
    Chen, Chang
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Lagae, Liesbet
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Groeseneken, Guido
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Stakenborg, Tim
    IMEC, Belgium.
    Zandbergen, Henny W.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Van Dorpe, Pol
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Photoresistance Switching of Plasmonic Nanopores2015In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 1, p. 776-782Article in journal (Refereed)
    Abstract [en]

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (similar to 12 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.

  • 50.
    Liao, Mingna
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Banerjee, Debashree
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hallberg, Tomas
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58330 Linkoping, Sweden.
    Åkerlind, Christina
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58330 Linkoping, Sweden.
    Alam, Md Mehebub
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Qilun
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kariis, Hans
    FOI Swedish Def Res Agcy, Dept Electroopt Syst, S-58330 Linkoping, Sweden.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cellulose-Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics2023In: Advanced Science, E-ISSN 2198-3844, Vol. 10, no 8, article id 2206510Article in journal (Refereed)
    Abstract [en]

    Cellulose opens for sustainable materials suitable for radiative cooling thanks to inherent high thermal emissivity combined with low solar absorptance. When desired, solar absorptance can be introduced by additives such as carbon black. However, such materials still shows high thermal emissivity and therefore performs radiative cooling that counteracts the heating process if exposed to the sky. Here, this is addressed by a cellulose-carbon black composite with low mid-infrared (MIR) emissivity and corresponding suppressed radiative cooling thanks to a transparent IR-reflecting indium tin oxide coating. The resulting solar heater provides opposite optical properties in both the solar and thermal ranges compared to the cooler material in the form of solar-reflecting electrospun cellulose. Owing to these differences, exposing the two materials to the sky generated spontaneous temperature differences, as used to power an ionic thermoelectric device in both daytime and nighttime. The study characterizes these effects in detail using solar and sky simulators and through outdoor measurements. Using the concept to power ionic thermoelectric devices shows thermovoltages of &gt;60 mV and 10 degrees C temperature differences already at moderate solar irradiance of approximate to 400 W m(-2).

    Download full text (pdf)
    fulltext
12 1 - 50 of 84
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf