liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    James, David Ian
    et al.
    Chalmers, Sweden.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Meng, Xiangyi
    Xi An Jiao Tong University, Peoples R China.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Andersson, Mats R.
    Chalmers, Sweden; University of S Australia, Australia.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Ergang
    Chalmers, Sweden.
    High-Performance Hole Transport and Quasi-Balanced Ambipolar OFETs Based on D-A-A Thieno-benzo-isoindigo Polymers2016In: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 2, no 4, p. 1500313-Article in journal (Refereed)
    Abstract [en]

    Two new conjugated polymers are synthesized based on a novel donor-acceptor-acceptor (D-A-A) design strategy with the intention of attaining lower lowest unoccupied molecular obital levels compared to the normally used D-A strategy. By coupling two thieno-benzo-isoindigo units together via the phenyl position to give a new symmetric benzene-coupled di-thieno-benzo-isoindigo (BdiTBI) monomer as an A-A acceptor and thiophene (T) or bithiophene (2T) as a donor, two new polymers PT-BdiTBI and P2T-BdiTBI are synthesized via Stille coupling. The two polymers are tested in top gate and top contact field effect transistors, which exhibit balanced ambipolar charge transport properties with poly(methyl methacrylate) as dielectric and a high hole mobility up to 1.1 cm(2) V-1 s(-1) with poly(trifluoroethylene) as dielectric. The polymer films are investigated using atomic force microscopy, which shows fibrous features due to their high crystallinity as indicated by grazing incidence wide-angle X-ray scattering. The theoretical calculations agree well with the experimental data on the energy levels. It is demonstrated that the D-A-A strategy is very effective for designing low band gap polymers for organic electronic applications.

  • 2.
    Li, Wei
    et al.
    Chalmers, Sweden; S China University of Technology, Peoples R China.
    Wang, Daojuan
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Ian James, David
    Chalmers, Sweden.
    Xu, Xiaofeng
    Chalmers, Sweden.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huang, Fei
    S China University of Technology, Peoples R China.
    Wang, Ergang
    Chalmers, Sweden.
    One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 49, p. 27106-27114Article in journal (Refereed)
    Abstract [en]

    Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (epsilon) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V-1 s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.

  • 3.
    Qian, Deping
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Liu, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Himmelberger, Scott
    Stanford University, CA 94305 USA.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Muller, Christian
    Chalmers, Sweden.
    Zaifei, Zaifei
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Salleo, Alberto
    Stanford University, CA 94305 USA.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zou, Yingping
    Central S University, Peoples R China.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells2015In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 48, p. 24349-24357Article in journal (Refereed)
    Abstract [en]

    In conjugated polymers and small molecules of organic solar cells, aggregation induced by intermolecular interactions governs the performance of photovoltaics. However, little attention has been paid to the connection between molecular structure and aggregation within solar cells based on soluble small molecules. Here we demonstrate modulation of intermolecular aggregation of two synthesized molecules through heteroatom substitution to develop an understanding of the role of aggregation in conjugated molecules. Molecule 1 (M1) based on 2-ethylhexyloxy-benzene substituted benzo[1,2-b:4,5-b]dithiophene (BDTP) and diketopyrrolopyrrole (DPP) displays strong aggregation in commonly used organic solvents, which is reduced in molecule 2 (M2) by facile oxygen atom substitution on the BDTP unit confirmed by absorption spectroscopy and optical microscopy, while it successfully maintains molecular planarity and favorable charge transport characteristics. Solar cells based on M2 exhibit more than double the photocurrent of devices based on M1 and yield a power conversion efficiency of 5.5%. A systematic investigation of molecular conformation, optoelectronic properties, molecular packing and crystallinity as well as film morphology reveals structure dependent aggregation responsible for the performance difference between the two conjugated molecules.

  • 4.
    Wang, Suhao
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Himmelberger, Scott
    Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
    Puzinas, Skomantas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Salleo, Alberto
    Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers2015In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, no 34, p. 10599-10604Article in journal (Refereed)
    Abstract [en]

    Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the p-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf