liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bestill onlineKjøp publikasjonen >>
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Tunable and modular assembly of polypeptides and polypeptide-hybrid biomaterials2016Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Biomaterials are materials that are specifically designed to be in contact with biological systems and have for a long time been used in medicine. Examples of biomaterials range from sophisticated prostheses used for replacing outworn body parts to ordinary contact lenses. Currently it is possible to create biomaterials that can e.g. specifically interact with cells or respond to certain stimuli. Peptides, the shorter version of proteins, are excellent molecules for fabrication of such biomaterials. By following and developing design rules it is possible to obtain peptides that can self-assemble into well-defined nanostructures and biomaterials.

    The aim of this thesis is to create ”smart” and tunable biomaterials by molecular self-assembly using dimerizing –helical polypeptides. Two different, but structurally related, polypeptide-systems have been used in this thesis. The EKIV-polypeptide system was developed in this thesis and consists of four 28-residue polypeptides that can be mixed-and-matched to self-assemble into four different coiled coil heterodimers. The dissociation constant of the different heterodimers range from μM to < nM. Due to the large difference in affinities, the polypeptides are prone to thermodynamic social self-sorting. The JR-polypeptide system, on the other hand, consists of several 42-residue de novo designed helix-loop-helix polypeptides that can dimerize into four-helix bundles. In this work, primarily the glutamic acid-rich polypeptide JR2E has been explored as a component in supramolecular materials. Dimerization was induced by exposing the polypeptide to either Zn2+, acidic conditions or the complementary polypeptide JR2K.

    By conjugating JR2E to hyaluronic acid and the EKIV-polypeptides to star-shaped poly(ethylene glycol), respectively, highly tunable hydrogels that can be self-assembled in a modular fashion have been created. In addition, self-assembly of spherical superstructures has been investigated and were obtained by linking two thiol-modified JR2E polypeptides via a disulfide bridge in the loop region. ŒThe thesis also demonstrates that the polypeptides and the polypeptide-hybrids can be used for encapsulation and release of molecules and nanoparticles. In addition, some of the hydrogels have been explored for 3D cell culture. By using supramolecular interactions combined with bio-orthogonal covalent crosslinking reactions, hydrogels were obtained that enabled facile encapsulation of cells that retained high viability.

    The results of the work presented in this thesis show that dimerizing α–helical polypeptides can be used to create modular biomaterials with properties that can be tuned by specific molecular interactions. The modularity and the tunable properties of these smart biomaterials are conceptually very interesting andmake them useful in many emerging biomedical applications, such as 3D cell culture, cell therapy, and drug delivery

    .

    Delarbeid
    1. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties
    Åpne denne publikasjonen i ny fane eller vindu >>Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties
    Vise andre…
    2015 (engelsk)Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, nr 14063Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials.

    sted, utgiver, år, opplag, sider
    NATURE PUBLISHING GROUP, 2015
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-121739 (URN)10.1038/srep14063 (DOI)000361177400001 ()26370878 (PubMedID)
    Merknad

    Funding Agencies|Swedish Research Council (VR); Swedish Foundation for Strategic Research (SSF)

    Tilgjengelig fra: 2015-10-06 Laget: 2015-10-05 Sist oppdatert: 2019-01-22
    2. Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting
    Åpne denne publikasjonen i ny fane eller vindu >>Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting
    2016 (engelsk)Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, nr 6, s. 2260-2267Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Physical hydrogels are extensively used in a wide range of biomedical applications. However, different applications require hydrogels with different mechanical and structural properties. Tailoring these properties demands exquisite control over the supramolecular peptides with different affinities for dimerization. Four different mechanical properties of hydrogels using de novo designed coiled coil interactions involved. Here we show that it is possible to control the nonorthogonal peptides, designed to fold into four different coiled coil heterodimers with dissociation constants spanning from mu M to pM, were conjugated to star-shaped 4-arm poly(ethylene glycol) (PEG). The different PEG-coiled coil conjugates self-assemble as a result of peptide heterodimerization. Different combinations of PEG peptide conjugates assemble into PEG peptide networks and hydrogels with distinctly different thermal stabilities, supramolecular, and rheological properties, reflecting the peptide dimer affinities. We also demonstrate that it is possible to rationally modulate the self-assembly process by means of thermodynamic self-sorting by sequential additions of nonpegylated peptides. The specific interactions involved in peptide dimerization thus provides means for programmable and reversible self-assembly of hydrogels with precise control over rheological properties, which can significantly facilitate optimization of their overall performance and adaption to different processing requirements and applications.

    sted, utgiver, år, opplag, sider
    AMER CHEMICAL SOC, 2016
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-130135 (URN)10.1021/acs.biomac.6b00528 (DOI)000377924800038 ()27219681 (PubMedID)
    Merknad

    Funding Agencies|Swedish Research Council [621-2011-4319]; Swedish Foundation for Strategic Research [ICA10-0002]; Linkoping University; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

    Tilgjengelig fra: 2016-07-12 Laget: 2016-07-11 Sist oppdatert: 2019-01-22
    3. Zinc-Triggered Hierarchical Self-Assembly of Fibrous Helix-Loop-Helix Peptide Superstructures for Controlled Encapsulation and Release
    Åpne denne publikasjonen i ny fane eller vindu >>Zinc-Triggered Hierarchical Self-Assembly of Fibrous Helix-Loop-Helix Peptide Superstructures for Controlled Encapsulation and Release
    2016 (engelsk)Inngår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 49, nr 18, s. 6997-7003Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    We demonstrate a novel route for hierarchical self-assembly of sub-micrometer-sized peptide superstructures that respond to subtle changes in Zn2+ concentration. The self-assembly process is triggered by a specific folding-dependent coordination of Zn2+ by a de novo designed nonlinear helix-loop-helix peptide, resulting in a propagating fiber formation and formation of spherical superstructures. The superstructures further form larger assemblies that can be completely disassembled upon removal of Zn2+ or degradation of the nonlinear peptide. This flexible and reversible assembly strategy of the superstructures enables facile encapsulation of nanoparticles and drugs that can be released by means of different stimuli.

    sted, utgiver, år, opplag, sider
    AMER CHEMICAL SOC, 2016
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-132215 (URN)10.1021/acs.macromol.6b01724 (DOI)000384399100030 ()
    Merknad

    Funding Agencies|Swedish Research Council [621-2011-4319]; Swedish Foundation for Strategic Research [ICA10-0002]; Linkoping University; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]

    Tilgjengelig fra: 2016-10-26 Laget: 2016-10-21 Sist oppdatert: 2019-01-22
  • 2.
    Aronsson, Christopher
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Dånmark, Staffan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Zhou, Feng
    Nanyang Technology University, Singapore.
    Öberg, Per
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.
    Enander, Karin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Su, Haibin
    Nanyang Technology University, Singapore.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties2015Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, nr 14063Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials.

  • 3.
    Aronsson, Christopher
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Zinc-Triggered Hierarchical Self-Assembly of Fibrous Helix-Loop-Helix Peptide Superstructures for Controlled Encapsulation and Release2016Inngår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 49, nr 18, s. 6997-7003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We demonstrate a novel route for hierarchical self-assembly of sub-micrometer-sized peptide superstructures that respond to subtle changes in Zn2+ concentration. The self-assembly process is triggered by a specific folding-dependent coordination of Zn2+ by a de novo designed nonlinear helix-loop-helix peptide, resulting in a propagating fiber formation and formation of spherical superstructures. The superstructures further form larger assemblies that can be completely disassembled upon removal of Zn2+ or degradation of the nonlinear peptide. This flexible and reversible assembly strategy of the superstructures enables facile encapsulation of nanoparticles and drugs that can be released by means of different stimuli.

  • 4.
    Christoffersson, Jonas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Jury, Michael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Mandenius, Carl-Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska fakulteten.
    Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device2018Inngår i: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, nr 1, s. 1-13, artikkel-id 015013Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3D orientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in the HA backbone, azide-modified cell adhesion motifs (linear and cyclic RGD peptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclic RGD peptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.

  • 5.
    Christoffersson, Jonas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Jury, Michael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Mandenius, Carl-Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska fakulteten.
    Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device2019Inngår i: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, nr 1, artikkel-id 015013Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3Dorientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in theHA backbone, azide-modified cell adhesion motifs (linear and cyclicRGDpeptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclicRGDpeptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.

  • 6.
    Dånmark, Staffan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting2016Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, nr 6, s. 2260-2267Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Physical hydrogels are extensively used in a wide range of biomedical applications. However, different applications require hydrogels with different mechanical and structural properties. Tailoring these properties demands exquisite control over the supramolecular peptides with different affinities for dimerization. Four different mechanical properties of hydrogels using de novo designed coiled coil interactions involved. Here we show that it is possible to control the nonorthogonal peptides, designed to fold into four different coiled coil heterodimers with dissociation constants spanning from mu M to pM, were conjugated to star-shaped 4-arm poly(ethylene glycol) (PEG). The different PEG-coiled coil conjugates self-assemble as a result of peptide heterodimerization. Different combinations of PEG peptide conjugates assemble into PEG peptide networks and hydrogels with distinctly different thermal stabilities, supramolecular, and rheological properties, reflecting the peptide dimer affinities. We also demonstrate that it is possible to rationally modulate the self-assembly process by means of thermodynamic self-sorting by sequential additions of nonpegylated peptides. The specific interactions involved in peptide dimerization thus provides means for programmable and reversible self-assembly of hydrogels with precise control over rheological properties, which can significantly facilitate optimization of their overall performance and adaption to different processing requirements and applications.

  • 7.
    Fursatz, Marian
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Skog, Mårten
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten. S2Med AB, Linnegatan 9, SE-58225 Linkoping, Sweden.
    Sivlér, Petter
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. S2Med AB, Linnegatan 9, SE-58225 Linkoping, Sweden.
    Palm, Eleonor
    Orebro Univ, Sweden.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Skallberg, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Khalaf, Hazem
    Orebro Univ, Sweden.
    Bengtsson, Torbjorn
    Orebro Univ, Sweden.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide epsilon-poly-L-Lysine2018Inngår i: Biomedical Materials, ISSN 1748-6041, E-ISSN 1748-605X, Vol. 13, nr 2, artikkel-id 025014Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting the beneficial structural and mechanical properties of the material would hence be highly attractive. Here we present methods for functionalization of BC with epsilon-poly-L-Lysine (epsilon-PLL), a non-toxic biopolymer with broad-spectrum antimicrobial activity. Low molecular weight epsilon-PLL was crosslinked in pristine BC membranes and to carboxymethyl cellulose functionalized BC using carbodiimide chemistry. The functionalization of BC with epsilon-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblasts as compared to native BC. The functionalization had no significant effects on the nanofibrous structure and mechanical properties of the BC. The possibility to functionalize BC with epsilon-PLL is a promising, green and versatile approach to improve the performance of BC in wound care and other biomedical applications.

  • 8.
    Selegård, Robert
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Brommesson, Caroline
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Dånmark, Staffan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel2017Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikkel-id 7013Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Protein-metal ion interactions are ubiquitous in nature and can be utilized for controlling the self-assembly of complex supramolecular architectures and materials. Here, a tunable supramolecular hydrogel is described, obtained by self-assembly of a Zn2+-responsive peptide-hyaluronic acid hybrid synthesized using strain promoted click chemistry. Addition of Zn2+ triggers folding of the peptides into a helix-loop-helix motif and dimerization into four-helix bundles, resulting in hydrogelation. Removal of the Zn2+ by chelators results in rapid hydrogel disassembly. Degradation of the hydrogels can also be time-programed by encapsulation of a hydrolyzing enzyme within the gel, offering multiple possibilities for modulating materials properties and release of encapsulated species. The hydrogel further shows potential antioxidant properties when evaluated using an in vitro model for reactive oxygen species.

  • 9.
    Skyttner, Camilla
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Enander, Karin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Tuning Liposome Membrane Permeability by Competitive Coiled Coil Heterodimerization and Heterodimer Exchange2018Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, nr 22, s. 6529-6537Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Membrane-active peptides that enable the triggered release of liposomal cargo are of great interest for the development of liposome-based drug delivery systems but require peptide-lipid membrane interactions that are highly defined and tunable. To this end, we have explored the possibility to use the competing interactions between membrane partitioning and heterodimenzation and the folding of a set of four different de novo designed coiled coil peptides Covalent conjugation of the cationic peptides triggered rapid destabilization of membrane mtegrity and the release of encapsulated species. The release was inhibited when introducing complementary peptides as a result of heterodimenzation and folding into coiled mils The degree of inhibition was shown to be dictated by the coiled coil peptide heterodimer dissociation constants, and liposomal release could be reactivated by a heterodimer exchange to render the membrane bound peptide free and thus membrane-active. The possibility to tune the permeability of lipid membranes using highly specific peptide-folding-dependent interactions delineates a new possible approach for the further development of responsive liposome-based drug delivery systems.

  • 10.
    Skyttner, Camilla
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Selegård, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Larsson, Jakob
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aronsson, Christopher
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Enander, Karin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Aili, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Sequence and length optimization of membrane active coiled coils for triggered liposome release2019Inngår i: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1862, nr 2, s. 449-456Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Defined and tunable peptide-lipid membrane interactions that trigger the release of liposome encapsulated drugs may offer a route to improving the efficiency and specificity of liposome-based drug delivery systems, but this require means to tailor the performance of the membrane active peptides. In this paper, the membrane activity of a de novo designed coiled coil peptide has been optimized with respect to sequence and size to improve release efficiency of liposome encapsulated cargo. The peptides were only membrane active when covalently conjugated to the liposomes. Two amino acid substitutions were made to enhance the amphipathic characteristics of the peptide, which increased the release by a factor of five at 1 mu M. Moreover, the effect of peptide length was investigated by varying the number of heptad repeats from 2 to 5, yielding the peptides KVC2-KVC5. The shortest peptide (KVC2) showed the least interaction with the membrane and proved less efficient than the longer peptides in releasing the liposomal cargo. The peptide with three heptads (KVC3) caused liposome aggregation whereas KVC4 proved to effectively release the liposomal cargo without causing aggregation. The longest peptide (KVC5) demonstrated the most defined a-helical secondary structure and the highest liposome surface concentration but showed slower release kinetics than KVC4. The four heptad peptide KVC4 consequently displayed optimal properties for triggering the release and is an interesting candidate for further development of bioresponsive and tunable liposomal drug delivery systems.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf