liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ouyang, Liangqi
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Musumeci, Chiara
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jafari, Mohammad Javad
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 35, p. 19764-19773Article in journal (Refereed)
    Abstract [en]

    Treating PEDOT:PSS (Clevios) with certain additives, such as ethylene glycol (EG), dimethyl sulfoxide (DMSO) and sorbitol, has been shown to increase the conductivity of this material from roughly 1 to nearly 1000 S/cm. Using a slow drying method, we show that the additive induced a separation between free PSS and reorganized PEDOT:PSS complexes in the highly conductive PEDOT:PSS films. Additives (DMSO, DEG, and PEG 400) were included in PEDOT:PSS aqueous dispersions at large volume fractions. The mixtures were slowly dried under room conditions. During drying, the evaporation of water resulted in an additive-rich solvent mixture from which the reorganized PEDOT:PSS complexes aggregated " into a dense film while free PSS remained in the solution. Upon complete drying, PSS formed a transparent rim film around the conducting PEDOT film. The chemical compositions of the two phases were studied using an infrared microscope. This removal of PSS resulted in more compact packing of PEDOT molecules, as confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy and atomic force microscope measurements suggested the enrichment of PEDOT on the film surface after PSS separation. Through a simple drying process in an additive-containing dispersion, the conductivity of PEDOT films increased from 0.1 to 200-400 S/cm. Through this method, we confirmed the existence of two phases in additive-treated and highly conductive PEDOT:PSS films. The proper separation between PSS and PEDOT will be of relevance in designing strategies to process high-performance plastic electrodes.

  • 2.
    Qu, Jing
    et al.
    University of Delaware, DE 19716 USA.
    Ouyang, Liangqi
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. University of Delaware, DE 19716 USA.
    Kuo, Chin-chen
    University of Delaware, DE 19716 USA.
    Martin, David C.
    University of Delaware, DE 19716 USA.
    Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films2016In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 31, p. 114-121Article in journal (Refereed)
    Abstract [en]

    Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this paper, the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Youngs modulus of the PEDOT films was 2.6 +/- 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 +/- 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 +/- 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 +/- 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 +/- 0.6 MPa. Statement of significance This paper describes methods for estimating the ultimate mechanical properties of electrochemically deposited conjugated polymer (here PEDOT and PEDOT copolymers) films. Of particular interest and novelty is our implementation of a cracking test to quantify the shear strength of the PEDOT thin films on these solid substrates. There is considerable interest in these materials as interfaces between biomedical devices and living tissue, however potential mechanisms and modes of failure are areas of continuing concern, and establishing methods to quantify the strengths of these interfaces are therefore of particular current interest. We are confident that these results will be useful to the broader biological materials community and are worthy of broader dissemination. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 3.
    Wang, Chuanfei
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Ouyang, Liangqi
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Xiaofeng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Relationship of Ionization Potential and Oxidation Potential of Organic Semiconductor Films Used in Photovoltaics2018In: Solar RRL, ISSN 2367-198X, Vol. 2, no 9Article in journal (Refereed)
    Abstract [en]

    Ultraviolet photoelectron spectroscopy (UPS) and cyclic voltammetry (CV) are employed to measure energy levels for charge transport in organic semiconductor films. A series of classical molecules/polymers used in organic bulk heterojunction solar cells are deposited on platinum substrates/electrodes to form thin films and a linear relationship of vertical ionization potential (IP) measured by UPS and relative oxidation potential (Eox) obtained by CV is found, with a slope equal to unity. The intercept varies with the different reference redox couples and repeated potential sweep numbers during experiment processes. The relationship provides for an easy conversion of values obtained by the two techniques and correlates well with device parameters. The precision in the CV-derived IP values is not sufficient, however, to enable precise design of energy level alignment at heterojunction and the approach does not improve upon the current ?best practice? for obtaining donor ionization potential?acceptor electron affinity gaps at heterojunctions.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf