liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Rebis, Tomasz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Poznan University of Tech, Poland.
    Yang Nilsson, Ting
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hybrid materials from organic electronic conductors and synthetic-lignin models for charge storage applications2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 5, p. 1931-1940Article in journal (Refereed)
    Abstract [en]

    Homopolymers and copolymers of the monolignols syringol (S) and guaiacol (G) were prepared as well-defined lignin model compounds. Polymerisation was performed by phenol-formaldehyde condensation, also including the monomer hydroquinone (HQ) to extend the range of redox processes in these synthetic lignins (SLig). The chemical structures of the SLig samples were characterized by C-13 and quantitative P-31 NMR, and the molecular weight was monitored by size exclusion chromatography (SEC). Subsequently, SLig were incorporated into two different electron-conducting matrix - single-wall carbon nanotubes (SWNT) and polypyrrole (PPy), respectively. As a result, the hybrid materials, with a controlled amount of SWNT or with an unknown amount of PPy, were assembled and compared. The charge storage properties in the investigated materials are attributed to contributions from both the double-layer capacitance of the conducting matrix, and the faradaic reactions provided by quinone groups immobilized in the electrodes. The results indicate a considerable improvement of charge capacity, with the synthetic lignins incorporated in the hybrid materials. With a PPy carrying S, G and HQ, better performance is obtained than has previously been obtained with lignin derivatives, showing a maximum capacity of 94 mA h g(-1). Moreover, a low amount of electronic conductor (20% wt of SWNT) is adequate to perform efficient electron communication between redox active quinones and the electrode surface, providing 72 mA h g(-1).

  • 2.
    Yang Nilsson, Ting
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wagner, Michal
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials2015In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 8, no 23, p. 4081-4085Article in journal (Refereed)
    Abstract [en]

    Lignin derivatives, which arise as waste products from the pulp and paper industry and are mainly used for heating, can be used as charge storage materials. The charge storage function is a result of the quinone groups formed in the lignin derivative. Herein, we modified lignins to enhance the density of such quinone groups by covalently linking monolignols and quinones through phenolation. The extra guaiacyl, syringyl, and hydroquinone groups introduced by phenolation of kraft lignin derivatives were monitored by P-31 nuclear magnetic resonance and size exclusion chromatography. Electropolymerization in ethylene glycol/tetraethylammonium tosylate electrolyte was used to synthesize the kraft lignin/polypyrrole hybrid films. These modifications changed the phenolic content of the kraft lignin with attachment of hydroquinone units yielding the highest specific capacity (around 70mAhg(-1)). The modification of softwood and hardwood lignin derivatives yielded 50% and 23% higher charge capacity than the original lignin, respectively.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf