liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Shula
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Filippov, Stanislav
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Ishikawa, Fumitaro
    Ehime University, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Core-shell carrier and exciton transfer in GaAs/GaNAs coaxial nanowires2016In: Journal of Vacuum Science & Technology B, ISSN 1071-1023, E-ISSN 1520-8567, Vol. 34, no 4, p. 04J104-Article in journal (Refereed)
    Abstract [en]

    Comprehensive studies of GaAs/GaNAs coaxial nanowires grown on Si substrates are carried out by temperature-dependent photoluminescence (PL) and PL excitation, to evaluate effects of the shell formation on carrier recombination. The PL emission from the GaAs core is found to transform into a series of sharp PL lines upon radial growth of the GaNAs shell, pointing toward the formation of localization potentials in the core. This hampers carrier transfer at low temperatures from the core in spite of its wider bandgap. Carrier injection from the core to the optically active shell is found to become thermally activated at Tamp;gt;60 K, which implies that the localization potentials are rather shallow. (C) 2016 American Vacuum Society.

  • 2.
    Chen, Shula
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Stehr, Jan Eric
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Huang, Yuqing
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Ishikawa, Fumitaro
    Ehime University, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 3, p. 1775-1781Article in journal (Refereed)
    Abstract [en]

    Nanowire (NW) lasers operating in the near infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, g(th), of 3300 cm(-1) and a spontaneous emission coupling factor beta, of 0.045. The dominant lasing peak is identified to arise from the HE21b, cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional pas sivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.

  • 3.
    Filippov, Stanislav
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Stehr, Jan Eric
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ishikawa, Fumitaro
    Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.
    Chen, Weimin M.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina A.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires2016In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, no 35, p. 15939-15947Article in journal (Refereed)
    Abstract [en]

    Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heterostructure engineering in GaNAs and GaAs/GaNAs coaxial NWs. In this work, it is shown that incorporation of nitrogen in GaAs NWs leads to formation of three-dimensional confining potentials caused by short-range fluctuations in the nitrogen composition, which are superimposed on long-range alloy disorder. The resulting localized states exhibit a quantum-dot like electronic structure, forming optically active states in the GaNAs shell. By directly correlating the structural and optical properties of individual NWs, it is also shown that formation of the localized states is efficient in pure zinc-blende wires and is further facilitated by structural polymorphism. The light emission from these localized states is found to be spectrally narrow (similar to 50-130 mu eV) and is highly polarized (up to 100%) with the preferable polarization direction orthogonal to the NW axis, suggesting a preferential orientation of the localization potential. These properties of self-assembled nano-emitters embedded in the GaNAs-based nanowire structures may be attractive for potential optoelectronic applications.

  • 4.
    Jansson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Chen, Shula
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    La, Rui
    University of Calif San Diego, CA 92093 USA.
    Stehr, Jan Eric
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Tu, Charles W.
    University of Calif San Diego, CA 92093 USA; University of Calif San Diego, CA 92093 USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Effects of Nitrogen Incorporation on Structural and Optical Properties of GaNAsP Nanowires2017In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 12, p. 7047-7055Article in journal (Refereed)
    Abstract [en]

    In this work, we carry out a comprehensive investigation of structural and optical effects in GaNAsP nanowires (NWs), which are novel materials promising for advanced photovoltaic applications. Despite a significant mismatch in electronegativity between N and As/P atoms, we show that incorporation of nitrogen does not degrade structural quality of the nanowires and the fabricated NW arrays have excellent compositional uniformity among individual wires. From temperature-dependent photoluminescence (PL) measurements, statistical fluctuations of the alloy composition are shown to lead to localization of photoexcited carriers at low temperatures but do not affect material properties at room temperature. According to time-resolved PL measurements, the room-temperature carrier lifetime increases in the GaNAsP NWs as compared with the GaAsP NWs, which indicates reduced nonradiative recombination. Moreover, in spite of the very low N content in the studied NWs (up to 0.16%), their bandgap energy can be tuned by more than 100 meV. This is accompanied by about 30% reduction in the temperature dependence of the bandgap energy. The presented results demonstrate that alloying of GaAsP with nitrogen provides an additional means of design optimization, beneficial for, e.g., NW-based intermediate band solar cells that are highly dependent on the optimum bandgap structure.

  • 5.
    Jansson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Ishikawa, Fumitaro
    Ehime University, Japan.
    Characterization of Quantum Dot-like Emission from GaAs/GaNAs Core/Shell Nanowires2016In: 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), IEEE , 2016, p. 42-44Conference paper (Refereed)
    Abstract [en]

    this work we investigate properties of ultra-narrow photoluminescence lines originating from recombination of excitons trapped by short-range potential fluctuations, caused by alloy disorder in GaAs/GaNAs core/shell nanowires. From power-dependent photoluminescence measurements we show that the emission behavior is consistent with biexciton-exciton cascade recombination in quantum dots. We also show that the thermal activation energy from the related localized states is of the order of 9-30 meV, suggesting a rather shallow confinement potential.

  • 6.
    Jansson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Francaviglia, Luca
    Ecole Polytech Fed Lausanne, Switzerland.
    La, Rui
    Univ Calif San Diego, CA 92093 USA.
    Balagula, Roman
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stehr, Jan Eric
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Charles W.
    Univ Calif San Diego, CA 92093 USA.
    Morral, Anna Fontcuberta I
    Ecole Polytech Fed Lausanne, Switzerland; Ecole Polytech Fed Lausanne, Switzerland.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence2019In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 30, no 40, article id 405703Article in journal (Refereed)
    Abstract [en]

    Cathodoluminescence (CL) and micro-photoluminescence spectroscopies are employed to investigate effects of structural defects on carrier recombination in GaNAsP nanowires (NWs) grown by molecular beam epitaxy on Si substrates. In the NWs with a low N content of 0.08%, these defects are found to promote non-radiative (NR) recombination, which causes spatial variation of the CL peak position and its intensity. Unexpectedly, these detrimental effects can be suppressed even by a small increase in the nitrogen composition from 0.08% to 0.12%. This is attributed to more efficient trapping of excited carriers/excitons to the localized states promoted by N-induced localization and also the presence of other NR channels At room temperature, the structural defects no longer dominate in carrier recombination even in the NWs with the lower nitrogen content, likely due to increasing importance of other recombination channels. Our work underlines the need in eliminating important thermally activated NR defects, other than the structural defects, for future optoelectronic applications of these NWs.

  • 7.
    Jansson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Ishikawa, F.
    Ehime Univ, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    N-induced Quantum Dots in GaAs/Ga(N, As) Core/Shell Nanowires: Symmetry, Strain, and Electronic Structure2018In: Physical Review Applied, E-ISSN 2331-7019, Vol. 10, no 4, article id 044040Article in journal (Refereed)
    Abstract [en]

    Nanowires (NWs) with embedded zero-dimensional (0D) quantum dots (QDs) have interesting fundamental properties attractive for a variety of applications. The properties of such embedded QDs can be controlled by 0D quantum confinement and also via strain engineering in axial or radial heterostructures of the nanowire system. We evaluate the electronic structure of QDs, which are formed in the Ga(N, As) shell of the GaAs/Ga(N, As) core-shell NWs due to alloy fluctuations. It is found that the principal quantization axis of the studied QDs is primarily oriented along the NW axis, based on the performed polarizationresolved magneto-photoluminescence measurements. We also show that the QDs exhibit a large spectrally dependent variation of the valence band character, which changes from pure heavy-hole states for the low-energy QD emitters to the mixed light-hole heavy-hole states for the QDs emitting at high energies. We ascribe these changes to combined effects of the uniaxial strain caused by the lattice mismatch between the GaAs core and the Ga(N, As) shell, and the local strain/lattice distortion within the short-range fluctuations in the N content. The obtained results underline the importance of the local strain for valence band engineering in hybrid NW structures with embedded QDs.

  • 8.
    La, Rui
    et al.
    Graduate Program of Material Science and Engineering, University of California.
    Liu, Ren
    Department of Electrical and Computer Engineering, University of California.
    Yao, Weichuan
    Department of Electrical and Computer Engineering, University of California.
    Chen, Renjie
    Department of Electrical and Computer Engineering, University of California.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Pan, Janet L.
    Department of Electrical and Computer Engineering, University of California.
    Buyanova, Irina A.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Xiang, Jie
    Department of Electrical and Computer Engineering, University of California.
    Dayeh, Shadi A.
    Department of NanoEngineering, University of California;Department of Electrical and Computer Engineering, University of California.
    Tu, Charles W.
    Department of Electrical and Computer Engineering, University of California.
    Self-catalyzed core-shell GaAs/GaNAs nanowires grown on patterned Si (111) by gas-source molecular beam epitaxy2017In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 111, article id 072106Article in journal (Refereed)
    Abstract [en]

    We report structural studies on the epitaxial growth of GaAs/GaNAs core-shell nanowires (NWs) on patterned Si (111) substrates by self-catalyzed selective area growth using Gas-Source Molecular Beam Epitaxy. Epitaxial growth conditions were obtained using a combination of dry and time-sensitive wet etching of the SiO2 growth mask and native SiO2 layer, respectively. We found that higher growth temperatures resulted in a higher yield for the epitaxial growth of patterned self-catalyzed GaAs NWs on Si with an optimal temperature of 690 °C. The GaNAs shell growth at 500 °C was found to be conformal and maintained an epitaxial and dislocation-free interface with both the Si substrate and the GaAs nanowire. The micro-photoluminescence (μ-PL) measurement at 6 K revealed two bands peaking at 1.45 and 1.17 eV, which could be emission from the GaAs core and GaNAs shell. Transmission electron microscopy showed the zincblende crystal structure of GaAs and GaAs/GaNAs core-shell NWs with minimal twinning near the base of the GaAs nanowires and at the tips of the GaAs/GaNAs core/shell nanowires. This study illustrates the feasibility of the epitaxial growth of patterned GaAs with dilute nitride shells on Si substrates, which would have potential for Si-friendly intermediate band solar cells and telecom emitters.

  • 9.
    Stehr, Jan Eric
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Balagula, Roman
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yukimune, M
    Ehime University, Matsuyama, Japan.
    Fujiwara, R
    Ehime University, Matsuyama, Japan.
    Ishikawa, Fumitaro
    Ehime University, Matsuyama, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina A
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range2020In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 31, no 6, article id 065702Article in journal (Refereed)
    Abstract [en]

    We report on optimization of growth conditions of GaAs/GaNAs/GaAs core/shell/shell nanowire (NW) structures emitting at ~1 μm, aiming to increase their light emitting efficiency. A slight change in growth temperature is found to critically affect optical quality of the active GaNAs shell and is shown to result from suppressed formation of non-radiative recombination (NRR) centers under the optimum growth temperature. By employing the optically detected magnetic resonance spectroscopy, we identify gallium vacancies and gallium interstitials as being among the dominant NRR defects. The radiative efficiency of the NWs can be further improved by post-growth annealing at 680 °C, which removes the gallium interstitials.

  • 10.
    Stehr, Jan Eric
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Chen, Shula
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Ishikawa, F.
    Ehime University, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Defect formation in GaAs/GaNxAs1-x core/shell nanowires2016In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 109, no 20, article id 203103Article in journal (Refereed)
    Abstract [en]

    Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor. Published by AIP Publishing.

  • 11.
    Sun, Jianwu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Gao, L.
    Department of Chemical Engineering and Chemistry, Eindhoven University of of Technology, P.O. Box 513, Eindhoven, Netherlands.
    Booker, Ian Don
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Liu, Xinyu
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Hofmann, J.P.
    Department of Chemical Engineering and Chemistry, Eindhoven University of of Technology, P.O. Box 513, Eindhoven, Netherlands.
    Hensen, E.J.M.
    Department of Chemical Engineering and Chemistry, Eindhoven University of of Technology, P.O. Box 513, Eindhoven, Netherlands.
    Linnarsson, M.
    School of Information and Communication Technology, KTH Royal Institute of Technology, Kista, Sweden.
    Wellmann, P.
    Department of Materials Science 6, University of of Erlangen-Nuremberg, Martensstr. 7, Erlangen, Germany.
    Ramiro, I.
    Instituto de Energía Solar, Universidad Politécnica de Madrid, E.T.S.I. Telecomunicación, Av. De la Complutense 30, Madrid, Spain.
    Marti, A.
    Instituto de Energía Solar, Universidad Politécnica de Madrid, E.T.S.I. Telecomunicación, Av. De la Complutense 30, Madrid, Spain.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Solar driven energy conversion applications based on 3C-SiC2016In: Materials Science Forum, Trans Tech Publications Ltd , 2016, Vol. 858, p. 1028-1031Conference paper (Refereed)
    Abstract [en]

    There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting. © 2016 Trans Tech Publications, Switzerland.

  • 12.
    Syväjärvi, Mikael
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Ma, Quanbao
    University of Oslo, Norway.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Galeckas, Augustinas
    University of Oslo, Norway.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Liu, Xinyu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
    Wellmann, Peter
    University of Erlangen Nurnberg, Germany.
    Linnarsson, Margareta
    KTH Royal Institute Technology, Sweden.
    Runde, Paal
    St Gobain Ceram Mat AS, Norway.
    Andre Johansen, Bertil
    St Gobain Ceram Mat AS, Norway.
    Thogersen, Annett
    SINTEF Mat and Chemistry, Norway.
    Diplas, Spyros
    SINTEF Mat and Chemistry, Norway.
    Almeida Carvalho, Patricia
    SINTEF Mat and Chemistry, Norway.
    Martin Lovvik, Ole
    SINTEF Mat and Chemistry, Norway.
    Nilsen Wright, Daniel
    SINTEF ICT, Norway.
    Yu Azarov, Alexander
    University of Oslo, Norway.
    Svensson, Bengt G.
    University of Oslo, Norway.
    Cubic silicon carbide as a potential photovoltaic material2016In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 145, p. 104-108Article in journal (Refereed)
    Abstract [en]

    In this work we present a significant advancement in cubic silicon carbide (3C-SiC) growth in terms of crystal quality and domain size, and indicate its potential use in photovoltaics. To date, the use of 3C-SiC for photovoltaics has not been considered due to the band gap of 2.3 eV being too large for conventional solar cells. Doping of 3C-SiC with boron introduces an energy level of 0.7 eV above the valence band. Such energy level may form an intermediate band (IB) in the band gap. This IB concept has been presented in the literature to act as an energy ladder that allows absorption of sub-bandgap photons to generate extra electron-hole pairs and increase the efficiency of a solar cell. The main challenge with this concept is to find a materials system that could realize such efficient photovoltaic behavior. The 3C-SiC bandgap and boron energy level fits nicely into the concept, but has not been explored for an IB behavior. For a long time crystalline 3C-SiC has been challenging to grow due to its metastable nature. The material mainly consists of a large number of small domains if the 3C polytype is maintained. In our work a crystal growth process was realized by a new approach that is a combination of initial nucleation and step-flow growth. In the process, the domains that form initially extend laterally to make larger 3C-SiC domains, thus leading to a pronounced improvement in crystalline quality of 3C-SiC. In order to explore the feasibility of IB in 3C-SiC using boron, we have explored two routes of introducing boron impurities; ion implantation on un-doped samples and epitaxial growth on un-doped samples using pre-doped source material. The results show that 3C-SiC doped with boron is an optically active material, and thus is interesting to be further studied for IB behavior. For the ion implanted samples the crystal quality was maintained even after high implantation doses and subsequent annealing. The same was true for the samples grown with pre-doped source material, even with a high concentration of boron impurities. We present optical emission and absorption properties of as-grown and boron implanted 3C-SiC. The low-temperature photoluminescence spectra indicate the formation of optically active deep boron centers, which may be utilized for achieving an IB behavior at sufficiently high dopant concentrations. We also discuss the potential of boron doped 3C-SiC base material in a broader range of applications, such as in photovoltaics, biomarkers and hydrogen generation by splitting water. (C) 2015 Elsevier B.V. All rights reserved.

  • 13.
    Yukimune, M.
    et al.
    Ehime Univ, Japan.
    Fujiwara, R.
    Ehime Univ, Japan.
    Ikeda, H.
    Ehime Univ, Japan.
    Yano, K.
    Ehime Univ, Japan.
    Takada, K.
    Ehime Univ, Japan.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Ishikawa, F.
    Ehime Univ, Japan.
    GaAs/GaNAs core-multishell nanowires with nitrogen composition exceeding 2%2018In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 113, no 1, article id 011901Article in journal (Refereed)
    Abstract [en]

    We report the growth of GaAs/GaNAs/GaAs core-multishell nanowires having N compositions exceeding 2%. The structures were grown by plasma-assisted molecular beam epitaxy using constituent Ga-induced vapor-liquid-solid growth on Si(111) substrates. The GaNAs shell nominally contains 0%, 2%, and 3% nitrogen. The axial cross-sectional scanning transmission electron microscopy measurements confirm the existence of core-multishell structure. The room temperature micro-photoluminescence measurements reveal a red-shift of the detected emission with increasing N content in the nanowires, consistent with the expected changes in the GaNAs bandgap energy due to the bowing effect. Published by AIP Publishing.

  • 14.
    Yukimune, M.
    et al.
    Ehime Univ, Japan.
    Fujiwara, R.
    Ehime Univ, Japan.
    Mita, T.
    Ehime Univ, Japan.
    Tsuda, N.
    Ehime Univ, Japan.
    Natsui, J.
    Ehime Univ, Japan.
    Shimizu, Y.
    Toray Res Ctr, Japan.
    Jansson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Balagula, Roman
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Ishikawa, F.
    Ehime Univ, Japan.
    Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires2019In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 30, no 24, article id 244002Article in journal (Refereed)
    Abstract [en]

    We report the growth of dilute nitride GaNAs and GaInNAs core-multishell nanowires (NWs) using molecular beam epitaxy assisted by a plasma source. Using the self-catalyst vapor-liquid-solid growth mode, these NWs were grown on Si(111) and silicon on insulator substrates. The GaNAs and GaInNAs shells contain nitrogen up to 3%. Axial cross-sectional scanning transmission electron microscopy measurements and energy-dispersive x-ray spectrometry confirm the formation of the core-multishell NW structure. We obtained high-quality GaNAs NWs with nitrogen compositions up to 2%. On the other hand, GaNAs containing 3% nitrogen, and GaInNAs NWs, show distorted structures; moreover, the optical emissions seem to be related to defects. Further optimisations of the growth conditions will improve these properties, promising future applications in nanoscale optoelectronics.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf