liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 11 of 11
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Dahlström, Nils
    et al.
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Woisetschläger, Mischa
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Singh, S
    Boston, MA/US.
    Digumarthy, M
    Kalra, Mannudeep
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Role of Sinogram Affirmed Iterative Reconstruction(Safire) technique in image quality and radiation dose reduction for chest CT examinations2012Konferansepaper (Annet vitenskapelig)
  • 2.
    Falk, Magnus
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för samhällsmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Närsjukvården i västra Östergötland, Forsknings- och utvecklingsenheten för Närsjukvården i Östergötland.
    Sjödahl, Rune
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Kirurgiska kliniken US. Region Östergötland, Centrum för hälso- och vårdutveckling, Patientsäkerhet.
    Wiréhn, Ann-Britt
    Linköpings universitet, Medicinska fakulteten. Region Östergötland, Närsjukvården i västra Östergötland, Forsknings- och utvecklingsenheten för Närsjukvården i Östergötland. Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för hälso- och sjukvårdsanalys.
    Lagerfelt, Marie
    Region Östergötland, Närsjukvården i västra Östergötland, Forsknings- och utvecklingsenheten för Närsjukvården i Östergötland.
    Woisetschläger, Mischa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Ahlström, Ulla
    Vårdcentralen Kungsgatan Linköping, Sweden Region Östergötland, Sweden.
    Myrelid, Pär
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Kirurgiska kliniken US.
    Modifierad brittisk modell kortade ledtid till datortomografi av kolon2015Inngår i: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 112Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The British national Institute for Health and Care Excellence (NICE) has presented guidelines based on signs and symptoms which should raise a suspicion of colorectal cancer. A slightly modified version of these guidelines, adapted to Swedish conditions, named Swedish NICE (sNICE) criteria, was implemented at eight primary care centres. By following the sNICE criteria, cases with higher degree of suspicion of colorectal cancer were advised for computer tomography (CT) of the colon, whereas cases of low degree of suspicion were advised for the considerably less time and patient demanding CT of the abdomen. For patients with isolated anal symptoms without presence of sNICE criteria, active expectancy for six weeks was recommended, followed by renewed consideration. Results showed that the ratio between CT colon and CT abdomen was reduced from 2.2 to 1.1 after introduction of the sNICE criteria. Also, the proportion of patients undergoing CT colon within two weeks from admittance was increased from 3 to 25 %. We conclude that the sNICE criteria may be a useful supportive tool for the primary care physician.

  • 3.
    Kalra, Mannudeep K.
    et al.
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Woisetschläger, Mischa
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Dahlström, Nils
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Sing, Sarabjeet
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Lindblom, Maria
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Choy, Garry
    Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Quick, Petter
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Schmidt, Bernhard
    Siemens Healthcare, Forchheim, Germany.
    Sedlmair, Martin
    Siemens Healthcare, Forchheim, Germany.
    Blake, Michail A.
    Radiology, Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Radiation Dose Reduction with Sinogram Affirmed Iterative Reconstruction Technique for abdominal Computer Tomography2012Inngår i: Journal of Computer Assisted Tomography, ISSN 0363-8715, Vol. 36, nr 3, s. 339-346Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Purpose: The objective of this study was to assess the effect of Sinogram Affirmed Iterative Reconstruction (SAFIRE) and filtered back-projection (FBP) techniques on abdominal computed tomography (CT) performed with 50% and 75% radiation dose reductions.

    Methods: Twenty-four patients (mean age, 64 ± 14 years; male-female ratio, 10:14) gave informed consent for an institutional review board–approved prospective study involving acquisition of additional research images through the abdomen on 128-slice multi–detector-row CT (SOMATOM Definition Flash) at quality reference mAs of 100 (50% lower dose) and 50 (75% lower dose) over a scan length of 10 cm using combined modulation (CARE Dose 4D). Standard-of-care abdominal CT was performed at 200 quality reference mAs, with remaining parameters held constant. The 50- and 100-mAs data sets were reconstructed with FBP and at 4 SAFIRE settings (S1, S2, S3, S4). Higher number of SAFIRE settings denotes increased strength of the algorithm resulting in lower image noise. Two abdominal radiologists independently compared the FBP and SAFIRE images for lesion number, location, size and conspicuity, and visibility of small structures, image noise, and diagnostic confidence. Objective noise and Hounsfield units (HU) were measured in the liver and the descending aorta.

    Results: All 43 lesions were detected on both FBP and SAFIRE images. Minor blocky, pixelated appearance of 50% and 75% reduced dose images was noted at S3 and S4 SAFIRE but not at S1 and S2 settings. Subjective noise was suboptimal in both 50% and 75% lower-dose FBP images but was deemed acceptable on all SAFIRE settings. Sinogram Affirmed Iterative Reconstruction images were deemed acceptable in all patients at 50% lower dose and in 22 of 24 patients at 75% lower dose. As compared with 75% reduced dose FBP, objective noise was lower by 22.8% (22.9/29.7), 35% (19.3/29.7), 44.3% (16.7/29.3), and 54.8% (13.4/29.7) on S1 to S4 settings, respectively (P < 0.001).

    Conclusions: Sinogram Affirmed Iterative Reconstruction–enabled reconstruction provides abdominal CT images without loss in diagnostic value at 50% reduced dose and in some patients also at 75% reduced dose.

  • 4.
    Kalra, Mannudeep K.
    et al.
    Division of Thoraic Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA .
    Woisetschläger, Mischa
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Dahlström, Nils
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Singh, Sarabjeet
    Massachusetts General Hospital, Boston, USA .
    Digumarthy, Subbarao
    Massachusetts General Hospital, Boston, USA .
    Do, Synho
    Massachusetts General Hospital, Boston, USA .
    Pien, Homer
    Massachusetts General Hospital, Boston, USA .
    Quick, Petter
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Schmidt, Bernhard
    Siemens Healthcare, Forchheim, Germany..
    Sedlmair, Martin
    Siemens Healthcare, Forchheim, Germany.
    Shepard, Jo-Anne O.
    Massachusetts General Hospital, Boston, USA .
    Persson, Anders
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Sinogram-Affirmed Iterative Reconstruction of Low-Dose Chest CT: Effect on Image Quality and Radiation Dose2013Inngår i: American Journal of Roentgenology, ISSN 0361-803X, E-ISSN 1546-3141, Vol. 201, nr 2, s. W235-W244Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    OBJECTIVE. The purpose of this study is to compare sinogram-affirmed iterative reconstruction (SAFIRE) and filtered back projection (FBP) reconstruction of chest CT acquired with 65% radiation dose reduction.

    SUBJECTS AND METHODS. In this prospective study involving 24 patients (11 women and 13 men; mean [+/- SD] age, 66 +/- 10 years), two scan series were acquired using 100 and 40 Quality Reference mAs over a 10-cm scan length in the chest with a 128-MDCT scanner. The 40 Quality Reference mAs CT projection data were reconstructed with FBP and four settings of Safire (S1, S2, S3, and S4). Six image datasets (FBP with 100 and 40 Quality Reference mAs, and S1, S2, S3, S4 with 40 Quality Reference mAs) were displayed on a DICOM-compliant 55-inch 2-megapixel monitor for blinded evaluation by two thoracic radiologists for number and location of lesions, lesion size, lesion margins, visibility of small structures and fissures, and diagnostic confidence. Objective noise and CT values were measured in thoracic aorta for each image series, and the noise power spectrum was assessed. Data were analyzed with analysis of variance and Wilcoxon signed rank tests.

    RESULTS. All 186 lesions were seen on 40 Quality Reference mAs SAFIRE images. Diagnostic confidence on SAFIRE images was higher than that for FBP images. Except for the minor blotchy appearance on SAFIRE settings S3 and S4, no significant artifacts were noted. Objective noise with 40 Quality Reference mAs S1 images (21.1 +/- 6.1 SD of HU) was significantly lower than that for 40 Quality Reference mAs FBP images (28.5 +/- 8.1 SD of HU) (p andlt; 0.001). Noise power spectra were identical for SAFIRE and FBP with progressive noise reduction with higher iteration SAFIRE settings.

    CONCLUSION. Iterative reconstruction (SAFIRE) allows reducing the radiation exposure by approximately 65% without losing diagnostic information in chest CT.

  • 5. Sarabjeet, Singh
    et al.
    Pourjabbar, Sarvenaz
    Khawaja, Ranish
    Padole, Atul
    Choy, Garry
    Kalra, Mannudeep
    Woisetschläger, Mischa
    Linköpings universitet, Institutionen för medicin och hälsa. Linköpings universitet, Hälsouniversitetet.
    Dahlström, Nils
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Persson, Anders
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Prospectively Acquired Low Doses in Abdominal CT and Role of Sinogram Affirmed Iterative REconstruction2013Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Assessment of the effect of Sinogram Affirmed iterative reconstruction (Safire) and Filtered Back Projection (FBP) technique on abdominal CT examination acquired at 200 mAs, 100 mAs, and 50 mAs.METHOD AND MATERIALS24 patients (mean age 64 ± 14 years, M:F 10 :14) gave informed consent for an IRB approved prospective study for additional research images through the abdomen on 128 slice MDCT (Siemens Flash) at 100 mAs and 50 mAs over a scan length of 10 cm using combined modulation technique. Images through entire abdomen were acquired at 200 mAs. The 50 and 100 mAs datasets were each reconstructed with FBP and four settings of Safire (S1, S2, S3, S4). The FBP 200 mAs images were compared side-by-side with FBP and Safire images from 50 and 100 mAs. The number and location of lesions, lesion size, lesion conspicuity, visibility of small structures were assessed by two experienced abdominal radiologists. The diagnostic acceptability was recorded on a four point scale (1= fully acceptable, 4= unacceptable). Objective noise and HU values were measured in liver and the descending aorta. The noise power spectrum was analyzed for FBP and different Safire settings.RESULTSA total of 43 lesions were detected on both FBP and Safire images. Minor blocky or pixilated appearance of 50 and 100 mAs images was noted at S3 and S4 Safire settings. No significant artifacts were noted on S1 and S2 Safire images. Image noise was suboptimal in FBP 100 and 50 mAs images, whereas noise was acceptable with S1, S2 and S3 and better than average on S4 setting. Safire could render 100 mAs images as fully acceptable for diagnostic confidence but 50 mAs Safire images were deemed to have lower diagnostic confidence compared to 200 mAs. As compared to 50 mAs FBP, objective noise was lower by 22.8% (22.9/29.7) on S1, 35% (19.3/29.7) on S2, 44.3% on S3 (16.7/29.3) and 54.8% (13.4/29.7) on S4 (p<0.001). Noise power spectrum analysis showed that Safire retains the noise power spectral signature similar to FBP, in spite of progressive noise reduction with higher iteration settingsCONCLUSIONSafire enabled reconstruction provides diagnostically acceptable abdominal CT images acquired at 100 mAs (50% reduced dose) but 50 mAs Safire images are not completely diagnostically acceptable despite reduced image noiseCLINICAL RELEVANCE/APPLICATIONRadiation dose reduction down to 100 mAs is achievable with Safire enabled abdominal CT examinations

  • 6.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Blomma, Johan
    Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Dahlström, Nils
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Bivik Stadler, Caroline
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Forsberg, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Liver data from the Visual Sweden project DROID: Analytic Imaging Diagnostics Arena (AIDA)2019Dataset
  • 7.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Dahlström, Nils
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Singh, S
    Boston, MA/US.
    Choy, G
    Boston, MA/US.
    O´connor, O
    Boston, MA/US.
    Blake, M A
    Boston, MA/US.
    Kalra, Manudeep
    Massachusetts General Hospital, Boston, USA.
    Persson, Anders
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Radiation dose reduction with Sinogram Affirmed Iterative REconstruction (Safire) technique for abdominal CT2012Konferansepaper (Annet vitenskapelig)
  • 8.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Landgren, Filip
    Filip Landgren Consulting, Linköping.
    Bivik Stadler, Caroline
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Forsberg, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Skeletal data from the Visual Sweden project DROID: Analytic Imaging Diagnostics Arena (AIDA)2019Dataset
  • 9.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping. Linköpings universitet, Hälsouniversitetet.
    Lussi, Adrian
    University of Zürich.
    Persson, Anders
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Östergötlands Läns Landsting, Diagnostikcentrum, Röntgenkliniken i Linköping. Linköpings universitet, Hälsouniversitetet.
    Jackowski, Christian
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet.
    Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures2011Inngår i: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 80, nr 2, s. 432-440Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    OBJECTIVES: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure.

    METHODS: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale.

    RESULTS: The majority of filling materials diminished in size at temperatures >/=400 degrees C. HU values were stable for all materials up till 200 degrees C, and only slightly changed up to 600 degrees C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 degrees C.

    CONCLUSIONS: Over 600 degrees C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 degrees C and have to be optimized for bodies exposed to higher temperatures.

  • 10.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Spångeus, Anna
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Endokrinmedicinska kliniken.
    Model for improved correlation of BMD values between abdominal routine Dual energy CT data and DXA scans2018Inngår i: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 99, s. 76-81Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background

    Osteoporosis is a common but underdiagnosed and undertreated disease causing severe morbidity and economic burden. The gold standard for detection of osteoporosis is DXA (dual energy x-ray absorptiometry), which is a dedicated examination for osteoporosis. Dual energy CT (DECT) examinations are increasingly used in daily routine for a wide variety of diagnoses. In the present study, we wanted to examine whether vBMD (volume bone mass density) could be evaluated as a side product in non-contrast as well as contrast phases as well as to evaluate a correction model taking known shortcomings for DXA into account.

    Methods

    A total of 20 patients, i.e. 79 vertebrae (one excluded due to vertebral fracture), mean age 71 years (range 43–85) with a mean BMI (body mass index) of 26 (range 17–33) were examined with both abdominal/pelvic DECT as well as DXA. Furthermore, aortic calcium was measured as well as the presence of osteoarthritis of the spine (OAS) and osteoarthritis in facet joints (OAF) with a 5-grade scaling system.

    Results

    A significant correlation was found between DXA BMD and vBMD from DECT with no contrast (WNC) (r = 0.424, p = 0.001), and with venous contrast (WVC) (r = 0.402, p < 0.001), but no significant correlation was found with arterial contrast (WAC). Using multivariate linear regression with DXA BMD as dependent, two models were created combining DECT WNC, aortic calciumscore (ACS), OAS and BMI yielding an R2 = 0.616 (model 1) and replacement of WNC to WVC a R2 = 0.612 (model 2). The Pearson correlation between DXA and predictive DXA BMD value of model 1 was r = 0.785 (p < 0.001) and model 2 r = 0.782 (p < 0.001).

    Conclusion

    There is a correlation between DXA BMD and DECT in non-contrast and venous contrast scans but not in arterial scans. The correlation is further improved by quantifying the degree of different confounding factors (osteoarthritis of the spine, body mass index and aortic calcium score) and taking these into account in an explanatory model. Future software solutions with DECT data as input data might be able to automatically measure the BMD in the trabecular bone as well as measuring the confounding factors automatically in order to obtain spinal DXA comparable BMD values.

  • 11.
    Woisetschläger, Mischa
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Spångeus, Anna
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Endokrinmedicinska kliniken.
    Model for improved correlation of BMD values between abdominal routine dual-energy CT data and DXA scans2018Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Background:

    Osteoporosis is a common but underdiagnosed and undertreated disease causing severe morbidity and economic burden. The gold standard for detection of osteoporosis is DXA (dual energy x-ray absorptiometry), which is a dedicated examination for osteoporosis. Dual energy CT (DECT) examinations are increasingly used in daily routine for a wide variety of diagnoses. In the present study, we wanted to examine whether vBMD (volume bone mass density) could be evaluated as a side product in non-contrast as well as contrast phases as well as to evaluate a correction model taking known shortcomings for DXA into account. 

    Methods:

    A total of 20 patients, i.e. 79 vertebrae (one excluded due to vertebral fracture), mean age 71 years (range 43 – 85) with a mean BMI (body mass index) of 26 (range 17 – 33) were examined with both abdominal/pelvic DECT as well as DXA.  Furthermore, aortic calcium was measured as well as the presence of osteoarthritis of the spine (OAS) and osteoarthritis in facet joints (OAF) with a 5-grade scaling system. 

    Results:

    A significant correlation was found between DXA BMD and vBMD from DECT without with no contrast (WNC) (r=0.424, p=0.001), and with venous contrast (WVC) (r=0.402, p<0.001), but no significant correlation was found with arterial contrast (WAC). Using multivariate linear regression with DXA BMD as dependent, two models were created combining DECT WNC, aortic calciumscore (ACS), OAS and BMI yielding an R2 = 0.616 (model 1) and replacement of WNC to WVC a R2 = 0.612 (model 2).  The Pearson correlation between DXA and predictive DXA BMD value of model 1 was r = 0.785 (p<0.001) and model 2 r = 0.782 (p<0.001).

    Conclusion:

    There is a correlation between DXA BMD and DECT in non-contrast and venous contrast scans but not in arterial scans. The correlation is further improved by quantifying the degree of different confounding factors (osteoarthritis of the spine, body mass index and aortic calcium score) and taking these into account in an explanatory model. Future software solutions with DECT data as input data might be able to automatically measure the BMD in the trabecular bone as well as measuring the confounding factors automatically in order to obtain spinal DXA comparable BMD values.

1 - 11 of 11
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf