liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alfredson, Jens
    et al.
    SAAB, Linköping, Sweden.
    Johansson, Björn
    Linköping University, Department of Computer and Information Science, Human-Centered systems. Linköping University, Faculty of Arts and Sciences.
    Gonzaga Trabasso, Luis
    Aeronautics Institute of Technology, Brazil.
    Schminder, Jörg
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Granlund, Rego
    Research Institutes of Sweden SICS East, Linköping, Sweden.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    DESIGN OF A DISTRIBUTED HUMAN FACTORS LABORATORY FOR FUTURE AIRSYSTEMS2018In: ICAS congress proceeding, International Council of the Aeronautical Sciences , 2018, article id ICAS2018_0305Conference paper (Other academic)
    Abstract [en]

    This paper presents a rationale for structuring a distributed human factors laboratory for future air systems. The distributed herein refers to two aspects: content and geographic. As for content, the laboratory is structured in two levels, namely, individual, and team. As for geographic, the laboratory infrastructure is distributed in three physically separate facilities, namely, Department of Computer and Information Science (IDA) and Department of Management and Engineering (IEI) from Linköping University – Sweden and the Competence Center in Manufacturing from the Aeronautics Institute of Technology (ITA) – Brazil.

  • 2.
    Hällqvist, Robert
    et al.
    Systems Simulation and Concept Design, Saab Aeronautics, Linköping, Sweden.
    Schminder, Jörg
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Eek, Magnus
    Systems Simulation and Concept Design, Saab Aeronautics, Linköping, Sweden.
    Braun, Robert
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    A Novel FMI and TLM-based Desktop Simulator for Detailed Studies of Thermal Pilot Comfort2018In: ICAS congress proceeding, International Council of the Aeronautical Sciences , 2018, article id ICAS2018_0203Conference paper (Other academic)
    Abstract [en]

    Modelling and Simulation is key in aircraft system development. This paper presents a novel, multi-purpose, desktop simulator that can be used for detailed studies of the overall performance of coupled sub-systems, preliminary control design, and multidisciplinary optimization. Here, interoperability between industrially relevant tools for model development and simulation is established via the Functional Mockup Interface (FMI) and System Structure and Parametrization (SSP) standards. Robust and distributed simulation is enabled via the Transmission Line element Method (TLM). The advantages of the presented simulator are demonstrated via an industrially relevant use-case where simulations of pilot thermal comfort are coupled to Environmental Control System (ECS) steadystate and transient performance.

  • 3.
    Schminder, Jörg
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    A generic simulation model for prediction of thermal conditions and human performance in cockpits2018In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 143, p. 120-129Article in journal (Refereed)
    Abstract [en]

    This paper presents a computational approach to predict the thermal environment in a cockpit during on-ground and in-flight aircraft operation. A method was developed to model cockpit air temperature, which serves as input to black-globe and wet-bulb temperature computation. Subsequently the simulated temperatures are used to compute common heat stress indices such as Wet Bulb Globe Temperature (WBGT), Fighter Index of Thermal Stress (FITS), or Predicted Mean Vote (PMV). To demonstrate the manifold information made available by the computed heat stress indices, WBGT e.g. is set in relation to different types of occupational exposure limits demonstrating not only the possibility to predict physiological constraints but mental performance too. The generic cockpit model and thermal comfort computations were validated against experimental data gained from on ground temperature measurements inside an aircraft cockpit, which underwent a sudden large temperature change. The results exemplify how thermal comfort and possible physical as well as mental degradation of aircrews can be assessed quickly using the presented model.

  • 4.
    Schminder, Jörg
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Nilsson, Elias
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Storck, Karl
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. SAAB Dynamics AB, Linköping, Sweden.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Development of a Cockpit-Pilot Model for Thermal Comfort Optimization During Long-Mission Flight2016In: AIAA Modeling and Simulation Technologies Conference San Diego, California, USA, AAAI Press, 2016Conference paper (Refereed)
    Abstract [en]

    The thermal comfort of a pilot is of crucial importance to maintain a high level ofconcentration and awareness during the entire ight mission. In this work a model for thethermal environment of the cockpit is developed and used as provider of input parametersto a thermoregulatory model, adopted from the literature, of a human. The cockpit-pilotmodel will be used to investigate and improve the thermal comfort for the pilot, particularlyduring longer ight missions. In the cockpit model a combination of lumped systems and nite dierence calculationsis used to obtain input parameters, which are provided to the pilot model. The body, withclothes, is divided into 16 segments and a nite dierence method is used to determine thetemperature distribution within these. Several physiological mechanisms are included inthe model. Simulations with dierent boundary conditions show that the models work properlyeven for longer missions.

  • 5.
    Schminder, Jörg
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Hällqvist, Robert
    Systems Simulation and Concept Design, Saab Aeronautics, Linköping, Sweden.
    Eek, Magnus
    Systems Simulation and Concept Design, Saab Aeronautics, Linköping, Sweden.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    PILOT PERFORMANCE AND HEAT STRESS ASSESSMENT SUPPORT USING A COCKPIT THERMOREGULATORY SIMULATION MODEL2018In: ICAS congress proceeding, International Council of the Aeronautical Sciences , 2018, article id ICAS2018_0463Conference paper (Other academic)
    Abstract [en]

    Flights with high thermal loads inside the cockpit can have a considerable impact on pilot physiological and psychological performance resulting in thermal discomfort, dehydration and fatigue. In this work, a Functional Mock-up Interface (FMI) based aircraft system simulator is utilized with intent to compute and predict thermal comfort. The simulator can for example serve pilots as a tool for heat stress and flight risk assessment, supporting their pre-flight planning or be used by engineers to design and optimize cooling efficiency during an early aircraft design phase. Furthermore, the presented simulator offers several advantages such as map based thermal comfort analysis for a complete flight envelop, time resolved mental performance prediction, and a flexible composability of the included models.

  • 6.
    Schminder, Jörg
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Nadali Najafabadi, Hossein
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Gårdhagen, Roland
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Learning by teaching: Student developed material for self-directed studies2016In: The 12th International CDIO Conference: Proceedings - Full Papers, Turku: Turku University of Applied Sciences , 2016, p. 750-759Conference paper (Refereed)
    Abstract [en]

    The objective of the presented paper is to demonstrate how e-learning course material developed by the students can enhance active learning for self-directed studies outside the classroom in a flipped classroom concept. A method which merges different learning activities such as learning by teaching, video based teaching etc. was developed to improve the students’ personal and interpersonal engineering skills in relation to CDIO standards. In an effort to assess the students’ satisfaction and practical use of the students’ created material, a survey was conducted. Statistics, the students’ feedback, and observations show an increase in learning motivation, deepened understanding, and expanded communication skills.

  • 7.
    Schminder, Jörg
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics.
    Nilsson, Filip
    Linköping University.
    Lundberg, Paulina
    Linköping University.
    Nguyen, Nghiem-Anh
    Linköping University.
    Hag, Christoffer
    Linköping University.
    Nadali Najafabadi, Hossein
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics.
    An IVR Engineering Educational Laboratory Accommodating CDIO Standards2019In: The 15th International CDIO Conference: Proceedings – Full Papers, Aarhus, 2019, p. 647-658Conference paper (Refereed)
    Abstract [en]

    This paper presents the development of an educational immersive virtual reality (IVR) program considering both technological and pedagogical affordances of such learning environments. The CDIO Standards have been used as guidelines to ensure desirable outcomes of IVR for an engineering course. A learning model has been followed to use VR characteristics and learning affordances in teaching basic principles. Different game modes, considered as learning activities, are incorporated to benefit from experiential and spatial knowledge representation and to create a learning experience that fulfils intended learning outcomes (ILOs) (defined by CDIO Standard 2 and Bloom’s learning taxonomy) associated with the particular course moment. The evaluation of IVR laboratory highlights effectiveness of the approach in achieving ILOs provided that pedagogical models have been followed to create powerful modes of learning.

  • 8.
    Schminder, Jörg
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Didacticum.
    Nilsson, Filip
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering.
    Lundberg, Paulina
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering.
    Nguyen, Nghiem-Ann
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering.
    Hag, Christoffer
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering.
    Nadali Najafabadi, Hossein
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Didacticum.
    An IVR Engineering Educational Laboratory AccommodatingCDIO Standards2019In: The 15th International CDIO Conference: Proceedings – Full Papers, Aarhus, 2019Conference paper (Refereed)
    Abstract [en]

    This paper presents the development of an educational immersive virtual reality (IVR) program considering both technological and pedagogical affordances of such learning environments. The CDIO Standards have been used as guidelines to ensure desirable outcomes of IVR for an engineering course. A learning model has been followed to use VR characteristics and learning affordances in teaching basic principles. Different game modes, considered as learning activities, are incorporated to benefit from experiential and spatial knowledge representation and to create a learning experience that fulfils intended learning outcomes (ILOs) (defined by CDIO Standard 2 and Bloom’s learning taxonomy) associated with the particular course moment. The evaluation of IVR laboratory highlights effectiveness of the approach in achieving ILOs provided that pedagogical models have been followed to create powerful modes of learning.

  • 9.
    Schminder, Jörg Paul Wilhelm
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Feasibility study of different methods for the use in aircraft conceptual design2012Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
    Abstract [en]

    The comparison of aerodynamic characteristics for a combat aircraft studywas addressed in this work. The thesis is a feasibility study which reviewsthe workload and output quality efficiency of different numerical and experimentalmethods often used during conceptual aircraft design.For this reason the Vortex Lattice Method (VLM), Euler or Reynolds-Averaged-Navier-Stokes (RANS) simulations were compared to the moreheavier Large Eddy Simulation (LES) which also has the capability to capturealso more complex flow physics, such as those that occur, for example,at high angles of attack. To be able to crosscheck the numerical results,the same static alpha sweep tests were executed in a tunnel. Thereby itwas discovered that it was quite challenging to reach the same values in thewater tunnel as those previously calculated in computational fluid dynamics(CFD) due to different technical issues.However it could be shown that LES simulations can be today a suitabletool for conceptual aircraft design, as they offer much higher levels ofaccuracy and give the designer the possibility to check the new study at anearly stage along the border of the aircraft’s flight envelope.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf