liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Wärner, Hugo
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    High Temperature Properties of Austenitic Stainless Steels for Future Power Plant Applications2019Conference paper (Refereed)
  • 2.
    Wärner, Hugo
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    High-Temperature Fatigue Behaviour of Austenitic Stainless Steel: Influence of Ageing on Thermomechanical Fatigue and Creep-Fatigue Interaction2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The global energy consumption is increasing and together with global warming from greenhouse gas emission, create the need for more environmental friendly energy production processes. Higher efficiency of biomass power plants can be achieved by increasing temperature and pressure in the boiler section and this would increase the generation of electricity along with the reduction in emission of greenhouse gases e.g. CO2. The power generation must also be flexible to be able to follow the demands of the energy market, this results in a need for cyclic operating conditions with alternating output and multiple start-ups and shut-downs.

    Because of the demands of flexibility, higher temperature and higher pressure in the boiler section of future biomass power plants, the demands on improved mechanical properties of the materials of these components are also increased. Properties like creep strength, thermomechanical fatigue resistance and high temperature corrosion resistance are critical for materials used in the next generation biomass power plants. Austenitic stainless steels are known to possess such good high temperature properties and are relatively cheap compared to the nickel-base alloys, which are already operating at high temperature cyclic conditions in other applications. The behaviour of austenitic stainless steels during these widened operating conditions are not yet fully understood.

    The aim of this licentiate thesis is to increase the knowledge of the mechanical behaviour at high temperature cyclic conditions for austenitic stainless steels. This is done by the use of thermomechanical fatigue- and creepfatigue testing at elevated temperatures. For safety reasons, the effect of prolonged service degradation is investigated by pre-ageing before mechanical testing. Microscopy is used to investigate the microstructural development and resulting damage behaviour of the austenitic stainless steels after testing. The results show that creep-fatigue interaction damage, creep damage and oxidation assisted cracking are present at high temperature cyclic conditions. In addition, simulated service degradation resulted in a detrimental embrittling effect due to the deterioration by the microstructural evolution.

    List of papers
    1. Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys
    Open this publication in new window or tab >>Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys
    2018 (English)In: MATEC Web of Conferences 165 , 05001 (2018) / [ed] EDP Sciences, EDP Sciences, 2018, Vol. 165Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    EDP Sciences, 2018
    National Category
    Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-148182 (URN)10.1051/matecconf/2018165505001 (DOI)
    Conference
    Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France
    Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-11-27
  • 3.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Structural Integrity and Impact Toughness of Austenitic Stainless Steels2019In: Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials, 2019Conference paper (Refereed)
  • 4.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys2019In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, no 127, p. 509-521Article in journal (Refereed)
    Abstract [en]

    The increasing demands for efficiency and flexibility result in more severe operating conditions for the materials used in critical components of biomass power plants. These operating conditions involve higher temperature ranges, more pronounced environmental effects and cyclic operations. Austenitic stainless steels have shown to possess promising high temperature properties which makes them suitable as candidates for critical components in biomass power plant. However, their behaviour under such conditions is not yet fully understood. This work investigates three commercial austenitic alloys: Esshete 1250, Sanicro 25 and Sanicro 31HT. The alloys were subjected to in-phase (IP) thermomechanical fatigue (TMF) testing under strain-control in the temperature range of 100–800 °C. Both virgin and pre-aged TMF specimens were tested in order to simulate service degradation resulting from long-term usage. The results show that the pre-aged specimens suffered shorter TMF-life compared to the virgin specimens. The scanning electron microscopy methods electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were used to analyse and discuss active failure and deformation mechanisms. The difference in TMF-life produced by the two testing conditions was attributed to an embrittling effect by precipitation, reduced creep properties and oxidation assisted cracking.

    The full text will be freely available from 2021-06-18 08:00
  • 5.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys2018In: MATEC Web of Conferences 165 , 05001 (2018) / [ed] EDP Sciences, EDP Sciences, 2018, Vol. 165Conference paper (Refereed)
  • 6.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Microscopic Evaluation of Creep-Fatigue Interaction in Heat Resistant Austenic Alloys2019Conference paper (Refereed)
  • 7.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Arts and Sciences. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Influence of Ageing on Thermomechaical Fatigue of Austenitic Stainless Steels2019In: Structural Integrity Procedia / [ed] Elsevier, Elsevier, 2019Conference paper (Refereed)
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf