liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Senel, Kamil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Joint User Activity and Non-Coherent Data Detection in mMTC-Enabled Massive MIMO Using Machine Learning Algorithms2018In: Proceedings of International ITG Workshop on Smart Antennas (WSA), Berlin, Germany, 2018Conference paper (Refereed)
    Abstract [en]

    Machine-type communication (MTC) services are expected to be an integral part of the future cellular systems. A key challenge of MTC, especially for the massive MTC (mMTC), is the detection of active devices among a large number of devices. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. CS-based techniques are shown to outperform conventional device detection approaches. However, utilizing CS-based approaches for device detection along with channel estimation and using the acquired estimates for coherent data transmission may not be the optimal approach, especially for the cases where the goal is to convey only a few bits of data. In this work, we propose a non-coherent transmission technique for the mMTC uplink and compare its performance with coherent transmission. Furthermore, we demonstrate that it is possible to obtain more accurate channel state information by combining the conventional estimators with CS-based techniques.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf